
IDRiM (2022) 12 (1)         ISSN: 2185-8322 

DOI10.5595/001c.35885 

 

 89 

 Journal of Integrated Disaster Risk Management

 

Original paper 

 

Rapid and Accurate Detection of Building Damage Investigation  

Using Automatic Method to Calculate Roof Damage Rate 

 

Shono Fujita1* and Michinori Hatayama 

2  

 

 

Received: 26/11/2021 / Accepted: 30/03/2022 / Published online: 24/05/2022 

 

Abstract In the event of a natural disaster, local Japanese governments investigate the level of 

damage of the buildings and issue damage certificates to the victims. The damage certificate is 

used to determine the content of the support provided to the victims; hence, they must be issued 

rapidly and accurately. However, in the past, the investigation of damage was time-consuming, 

thus delaying the support provided to the victims. Additionally, while investigating the roof of 

the damaged building, it was difficult for the investigators to look at the entire roof and 

calculate the damage rate accurately. Therefore, we have developed an automatic method to 

calculate the damage rate of a roof using image recognition from aerial photos so that building 

damage investigation can be more accurate and rapid. We requested the staff in the disaster 

management division to evaluate the estimation results of this model and confirm its 

effectiveness. As a result, 80 % of the roof data obtained from this method was equal to or 

more accurate than the investigator checking from the ground. Additionally, we have 

developed an efficient flow for building damage investigation using the proposed system. In 

the future, we aim to investigate the system usage to ensure responsibility in data estimation. 
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1. INTRODUCTION 

 

In the event of natural disasters, such as earthquakes, storms, and floods, the Japanese local 

government investigated the level of damage to each building and issued a damage certificate 

to the victims to prove that the buildings were damaged by the disaster. As this certificate is 

used to determine the content of their support, such as temporary housing, support money, and 

loans, it is necessary to reconstruct their livelihoods. Moreover, until they receive the actual 

certificate, they are unable to make plans to reconstruct their livelihoods, especially regarding 

their residence. Hence, they must be issued accurately and rapidly (Disaster Management, 

Cabinet Office, Government of Japan 2020). After the earthquake in Great East Japan, the 

Basic Act on Disaster Control Measures was revised, and local governments were instructed 

to issue damage certificates without delay (Disaster Management, Cabinet Office, Government 

of Japan 2020). However, in the past, the process of building damage investigation and issuing 

damage certificates was time-consuming and delayed the support provided to the victims.  

The building damage investigation is conducted by the staff of the local government and has 

three stages: first, second, and reinvestigation. The results of this investigation require the 

agreement of the victims. If the victims are not convinced of the results of the first investigation, 

they can apply for a second investigation or a reinvestigation. The first investigation is 

comparatively simple because it is a visual inspection. The second investigation and 

reinvestigation are detailed. At each stage of the investigation, the investigators check the 

appearance, inclination of the building, or damage degree of each part, such as walls, 

foundations, and roofs, to calculate the level of damage to the entire building. An overall 

damage rate of more than 50 % is assigned to completely destroyed structures, 40–50 % to 

large-scale half destroyed structures, 30–40 % to middle-scale half destroyed structures, 20–

30 % to half destroyed structures, 10–20 % corresponds to semi half destruction, and less than 

10 % to partially damaged structures (Disaster Management, Cabinet Office, Government of 

Japan 2021). 

However, in the roof damage investigation, the investigators cannot investigate the entire 

roof. Therefore, they look at the roof from a distance and investigate it within the range of 

vision from the ground. In addition, they calculate the degree of damage to each roof surface 

and need advanced expert knowledge. These inaccurate investigations result in victims’ 

dissatisfaction with the results, and the number of second investigations or reinvestigations 

increases. In past earthquakes, investigations classified as unsatisfactory to resident caused 

much trouble between local governments and victims (Shigekawa et al. 2005). 

After the Kumamoto earthquake in 2016, 135,959 first investigations, 37,807 second 

investigations, and 2,635 reinvestigations were conducted in Kumamoto City (Department of 

Crisis Management, Kumamoto Prefecture, 2020). One of the previous studies (Inoue et al. 

2018) reported that the work on building damage investigation in one city of Kumamoto 

Prefecture took approximately 29,000 man-days, which was the largest number after the work 
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on the issue of damage certificates. Thus, improving the efficiency of building damage 

investigation may enable the local governments to allocate manpower to other tasks effectively. 

In previous earthquakes in Japan, many buildings, especially wooden buildings, were 

damaged. Based on investigations to assess damaged buildings after the 2016 Kumamoto 

earthquake, 8,642 buildings were found to have been completely destroyed, 34,393 buildings 

were half destroyed, and 155,177 buildings were partially damaged (Department of Crisis 

Management in Kumamoto Prefecture, 2020). In Mashiki-town, which was the epicenter of the 

damage, 28.2 % of wooden buildings built before 1981 collapsed (Ministry of Land, 

Infrastructure, Transport, and Tourism 2016). In Japan, the ratio of wooden buildings is 56.97%, 

and this increases to 92.5 % for single houses (E-Stat 2018, Ministry of Internal Affairs and 

Communications 2018). Although changes in building standards have resulted in buildings 

more robust to earthquakes, many buildings may still be damaged. Traditional Japanese tile 

roofs tend to be damaged by earthquakes or typhoons. Many Japanese people select this tile 

roof for reasons such as their design, durability, and heat resistance. Prior to the change in the 

building standard in 1981, tile roofs of buildings did not have to be fixed to the roof base. 

Currently, the number of tile roofs that sustain damage in disasters is decreasing because of 

revised strict building standards, the use of light raw materials, and a decrease in the number 

of people using tile roofs. However, many old buildings, or buildings without sufficient 

countermeasures, may still be damaged in the future. 

 

2. RESEARCH PURPOSE 

 

Based on the aforementioned challenges, the problems encountered during building damage 

investigations are as follows: 

(1). Building damage investigation is time consuming and delays the support provided to 

the victim’s livelihood. 

(2). In the roof investigation, the investigators cannot look at the entire roof from the outside; 

hence, the results are not accurate. 

(3). The investigators must have prior technical knowledge owing to the complexity of 

investigation. 

Therefore, the purpose of this study is to develop a system to automatically calculate the 

damage rate of roofs using image recognition from aerial photos so that building damage 

investigation can be more rapid and accurate. Additionally, using aerial photos enable the 

investigators to accurately investigate the part of the roof that cannot be seen from the outside. 

Moreover, if image recognition can calculate the precise damage rate of the roof, prior technical 

knowledge is not required and people other than experts in architecture can also investigate the 

roof accurately. 
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3. PREVIOUS STUDIES 

 

Vetrivel et al. (2018) developed a damage-building detection model using deep learning and 

3D point cloud features. They used high-resolution oblique aerial photos as the inputs for the 

model. Tu et al. (2017) developed a detection model to identify damaged regions using a 

support vector machine, which is a type of machine learning method. They used multi-temporal 

high-resolution remote sensing images to detect changes in the buildings owing to damage. 

This study uses aerial photos that are obtained by drones or aircraft at a low price. This provides 

easy access to training and estimation data during disasters. 

Ji et al. (2019) estimated damaged buildings using texture analysis, which analyzes the state 

and pattern of the object surface, and a convolutional neural network (CNN), which is a type 

of deep learning for image recognition, based on differences in post-disaster and pre-disaster 

aerial photos. In addition, Fujita et al. (2017) used the information on differences in post-

disaster and pre-disaster aerial photos to detect damage of buildings by tsunami using a CNN. 

However, the pre-disaster aerial images may be old, and the building information may be 

significantly different from the post-disaster images. Such buildings include not only damaged 

buildings but also new buildings or demolished buildings. Therefore, their system may detect 

buildings that are not damage. This problem was addressed in this study because only post-

disaster aerial photos were used. Meloy et al. (2007) investigated the roof performance of new 

homes in Florida damaged by Hurricane Charley using oblique aerial photos with four angles. 

They used a special tool to obtain the area ratio of the damaged part by manual entry, and 

determined the damage level from this ratio. This study calculates automatically the damage 

rate of a Japanese building damage investigation from both the area ratio and type of damage. 

Moreover, this study does not use oblique aerial photos but ortho photos, which were taken 

from directly overhead. In Japan, many companies and organizations employ ortho arial 

photographs because it is easy to overlay them on maps, and are thus considered important by 

disaster response organizations. Considering their availability, ortho aerial photos are effective 

for this system. 

Inoguchi et al. (2019) developed a detection system for buildings with blue sheets using a 

CNN for deep learning from the aerial photos captured by drones. Their data were generated 

from images of the roof immediately after they were captured manually. However, these 

methods are time-consuming during disasters. In this study, data are generated using the 

original trimming algorithm based on the location information of the building polygon, which 

is geospatial information. Miura et al. (2020) identified collapsed buildings and blue tarp-

covered buildings using deep learning from aerial images. However, the focus was on the 

damage to the entire building, not just the roof.  

According to previous studies, the efficiency of building damage investigations can be 

improved using various methods. Matsuoka et al. (2018) judged the level of damage to the 

building using a CNN from aerial photos and investigation field photos for the purpose of 

investigation. They also focused on the damage to the entire building and did not refer to the 
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usage of their system in the actual investigation field during a disaster. Tanaka et al. (2008) 

analyzed the processes of building damage investigation and proposed a self-inspection system 

that can be used by a non-expert. Fujiu et al. (2012) developed a remote judgment system for 

building damage investigations using smartphones and the Internet to improve the efficiency 

of the investigation and issue of damage certificates. To the best of our knowledge, there is no 

existing research on automatically calculating the degree of damage of the damage building 

investigation of individual parts of buildings, particularly roofs from the aerial photos, 

considering usage during actual disaster response, such as obtaining aerial photos and 

generating image data. 

 

4. AUTOMATIC METHOD TO CALCULATE DAMAGE RATE OF ROOF 

 

 
Figure 1.  Overall structure of the proposed system 

 

Table 1.  Usage of the proposed system 

 

 

4.1 Overall Structure of Proposed System 

Figure 1 shows the overall structure of the proposed system. After a disaster occurs, the 

proposed system automatically generates images of the roof using a trimming algorithm, aerial 
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photos and geospatial information, such as the location information of building polygons. Then, 

each data point of the image of the roof is fed as an input to the image recognition model to 

estimate the damage to the roof. In our previous study (Fujita and Hatayama 2021), this image 

recognition model estimated the presence of roof damage to grasp the necessary time, 

manpower, and resources, determine the investigated buildings, and investigate all buildings 

or only the applied buildings. In this study, we developed an image recognition model to 

calculate the damage rate of the roof so that the building damage investigation can be more 

rapid and accurate to address the following usages:  

(1) Present information about roof parts that cannot be seen from the outside using aerial 

photos. 

(2) Present information about roof parts with high probability of damage and advise 

investigation to investigators. 

(3) Calculate the damage rate of the roof directly using the model for building damage 

investigation. 

Table 1 lists the details of these usages. In this table, “O” means “use” and “X” means “do 

not use”. In all three usages, the investigators are in the investigation field to investigate certain 

parts of the building other than the roof. 

 

4.2 Trimming Algorithm 

The trimming algorithm can 

automatically generate data from the 

image of the roof using aerial photos 

and location information of the vertex 

of the building polygon as shown in 

Figure 2. Because trimming can 

extract each image from aerial photos, 

this model can reduce the time 

required to generate image data so 

that the level of damage can be 

estimated rapidly during a disaster. Subsequently, a large amount of training data is generated 

for deep learning. Moreover, this method uses building polygons; hence, the proposed model 

can estimate the damage not by area but by building and obtain detailed information. Moreover, 

painting areas of the building other than the roof with black can remove unnecessary 

information while calculating the damage rate of the roof, which increases accuracy. 

 

 

＋ ＝

Aerial photos Building 

polygon

Roof image

Figure 2.  Trimming algorithm 
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4.3 Method to Calculate Damage Rate of Roof in Building Damage Investigation 

During the investigation, the investigator calculates the damage rate of certain parts of the 

building, such as the wall, foundation, and roof and, determines the level of damage of the 

building from the total amount of damage. The damage rate of the roof is calculated by 

multiplying the degree of damage by the roof surface area rate. These values are then added as 

in equation (1), where Si is the area of roof i, Se is the area of the entire roof, and Di is the 

damage degree of roof i. The damage degree is represented as a percentage based on the 

damage type and position. If one roof surface has a different degree of damage, then the degree 

of damage is calculated by the average weight of these areas (Disaster Management, Cabinet 

Office, Government of Japan 2020). 

𝐷𝑎𝑚𝑎𝑔𝑒 𝑟𝑎𝑡𝑒 = ∑
𝑆𝑖

𝑆𝑒

𝑖

× 𝐷𝑖 (1) 

 

4.4 Problem of This Study 

Our previous study (Fujita and Hatayama 2021) estimated the damaged roof and the roof 

covered with a blue sheet using deep learning from trimming roof data. Because many victims 

covered the damaged part of the roof with a blue sheet to prevent wind and rainwater, we 

identified the roof covered with a blue sheet as a damaged roof. Consequently, the accuracy of 

the estimation of the damaged roof was lower than that of the roof covered with a blue sheet. 

Based on this result, we concluded that the challenges to be addressed were the difficulty in 

extracting the features of the damaged part and the lower resolution of the aerial photos 

captured by the aircraft. It is necessary to use abundant training data to improve the accuracy 

of deep learning models. However, there are insufficient high-resolution aerial photos that 

include roofs damaged by earthquakes. The reasons for this are the low frequency of 

earthquakes, short time since the invention of drones that can capture aerial photos with high 

resolution, and time limitation, which forced us to take aerial photos of the roof covered with 

a blue sheet. Thus, we concluded that the problem in the estimation from aerial photos during 

disasters in our study was limited training data, which is necessary for the improvement of 

accuracy.  

 

4.5 Proposed Method to Calculate Damage Rate of Roof 

Figure 3.  Flow of the proposed method to calculate damage rate of the roof 
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Based on the above problem, the trimming of roof images is divided into roof surfaces, thus 

increasing the amount of training data, as shown in Figure 3. Generating multiple roof images 

from one trimming roof image enables us to obtain training data several times. Then, the 

divided roof surface images are fed as inputs to the classification model to estimate the degree 

of damage. Finally, the degree of damage is multiplied by the area rate, and the values for all 

the roof surfaces are added to obtain the damage rate of the roof.  

Ise et al. (2018) suggested a deep learning method using finely divided image data obtained 

from images as training data to classify moss and obtain a high accuracy. This shows that the 

division method can generate a large amount of training data from one image to improve 

accuracy. In terms of the building damage investigation, the proposed method follows the 

calculation method of the actual investigation. Therefore, the calculation result obtained in the 

proposed method is close to the actual result, and the skepticism of the victims regarding the 

accuracy of the estimated result may decrease. Moreover, this method obtains the degree of 

damage of each roof surface; hence, we can determine the actual damaged roof surface. 

Therefore, the second usage of the proposed system, which is to present information about roof 

parts with a high probability of damage, can be achieved. Additionally, in the third usage of 

our system, which is to use the damage rate of the roof directly, as calculated by the model 

during building damage investigation, the proposed model can indicate the basis for judging 

the calculation result to the investigators or victims. As mentioned above, the damage level of 

a building estimated during a building damage investigation determines the support content for 

the victims. Thus, when the victims are not convinced of the estimated level of damage or the 

calculated damage rate is located near the borderline position of the damage level class, many 

troubles with victims are likely to occur. In addition, in deep learning with high accuracy, 

numerous parameters act on each other. It is difficult to directly obtain an interpretation or 

explanation of the training or manual estimation. However, it is likely that providing a basis 

for judgment in addition to the high accuracy of the proposed method, will enables a smooth 

response without problems. 

 

4.6 Necessary Data 

To operate this system, data such as aerial photos for estimation, location information of 

building polygons, and training data (aerial photos and correct labels for deep learning) are 

necessary. Aerial photos for estimation during a disaster can be obtained for free from the 

Geospatial Information Authority of Japan or a non-profit organization, such as Drone Bird. 

The location information of building polygons can be downloaded from Fundamental 

Geospatial Data in Japan or Open Street Map. The approach to training data differs based on 

when the model is trained, whether before or after a disaster. If the model is trained before a 

disaster occurs, a general model that considers the features of the region, such as the roof format, 

must be constructed. For example, Naito et al. (2020) constructed a general model to estimate 

building damage by deep learning using aerial photos of several regions as training data. If the 
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model is trained after a disaster, a model that considers the features of a region can be 

constructed using part of the aerial photo of the estimation data as training data. However, in 

this case, the input of the correct answer label to the training data (annotation) must be 

conducted rapidly after a disaster. For example, cooperation by cloud sourcing or requesting 

input from outside people, such as those who are aware of the investigation process or experts 

is necessary.  

Thus, aerial photos and location information of building polygons can be obtained from 

existing data, and the label for deep learning can be obtained from existing systems or staff 

with knowledge of the investigation. This indicates that the proposed system can be operated 

only by local governments, and ensures the feasibility of the system.  

 

5. DIVISION OF ROOF SURFACE 

 

5.1 Data Division Model 

This study uses an instance segmentation model of deep learning that extracts the region of 

an object by classifying each pixel in an image to divide the roof surface because, a deep 

learning model can extract complicated features such as roof surfaces in images even with 

damage or dirt. In particular, this study uses Mask R-CNN (He et al. 2017), which is one of the 

most accurate instance segmentation models. 

 

 

 

Figure 4.  Left side shows transition of the loss function of the first experiment, and right side shows 

one of the additional experiments. The orange line represents one of the training data and blue line 

represents one of the validation data. 
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5.2 Training Method 

Table 2. Result of dividing roof surface 

 

 

 

Figure 5.  Left: images of the roof with damage in roof surface, center: images of the roof with 

damage in boundary, and right: images of the roof with leaf in them. Each row shows original image, 

correct region, and estimated region from left to right. 

 

We generated images of the roof using a trimming algorithm and ortho aerial photos taken 

in Mashiki town of Kumamoto prefecture after the 2016 Kumamoto Earthquake. These aerial 

photos were taken by aircraft rather than drones, with a resolution of 20 cm and an elevation 

of 1396m. Although these are low-resolution photographs, they cover a very wide area in the 

damaged region. The location information of the building polygons was obtained from the 

Fundamental Geospatial Data of the Geospatial Information Authority of Japan. This 

annotation took approximately 1 min for one roof image and a total of 8–9 h. In this study, 

2400 (300×8) images were used as training data to update the parameters, 800 (100×8) images 

were used as validation data to confirm overfitting, and 800 (100×8) images were used as test 

data to evaluate the accuracy of the model. The number of data points was increased eight times 

with horizontal flipping and rotation of each image. Because there is a gap between the location 

of the building polygon and the actual building, we excluded roof images whose gap was large 

or the roof surface could not be judged by observation from these datasets. 

The loss function of the validation data was confirmed to prevent overfitting. When this 

value increased, we considered the increase to be overfitting and stopped the training. In this 

study, the classification classes were set to 2 (roof and background), the size of the input image 

to 256×256, the batch size to 2, the number of iterations in one epoch to 100, and the number 

of iterations in the calculation of the loss function of the validation data to 5. Tesla K40c and 

First experiment Additional experiment

All

images

Images with damage 

in roof surface

Images with damage 

in boundary

Images with leaf All

images

Images with damage 

in roof surface

Images with damage 

in boundary

Average 

of IoU
0.7580 0. 7341 0. 6874 0.7237 0. 7672 0. 6858 0. 7074

Average

of AP
0. 6670 0. 6846 0. 5752 0. 3979 0. 6934 0. 6094 0.4628
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GeoForce GTX 1060 6 GB of NVIDIA were used as the GPU in this experiment. The training 

of 1000 epochs took approximately 16 h. The left side of Figure 4 shows the transition of the 

loss function of the training and validation datasets. Because an increase in the loss function 

appeared in epoch 500, the training was stopped at epoch 500 using with the proposed model. 

 

5.3 Result of Division in the First Experiment 

The average intersection of union (IoU) by image in the first experiment was 0.7580 and the 

average of average precision (AP) was 0.6670, as shown in Table 2. The IoU indicates the 

degree of overlap between the correct and estimated regions. The AP indicates the degree of 

recall and precision of the regions estimated by image. As a result, images with high AP and 

IoU tended to have large and few regions of the roof surface in each image. 

In the roof images with damaged regions, as shown in Figure 5, there is a difference between 

the accuracy of roof surface division between roof images with damaged regions on the roof 

surface (Figure 5, left) and roof images with damaged regions at the boundary of the roof 

surface (Figure 5, middle). Comparing the 40 image data with damage to the roof surface (five 

original images) with all the other images from Table 2, it was observed that the proposed 

model is capable of dividing the roof surface of these images as accurately as other roof images. 

Therefore, even if the color or texture of the roof surface is discontinuous, the model can 

accurately divide the roof surface. This result suggests that instance segmentation using deep 

learning is effective for image division. However, when the 40 images with damage at the 

boundary of the roof surface (five original images) were compared with all other images from 

Table 2, the model could not divide the roof surface of these images with the same accuracy as 

other roof images. Additionally, it was observed that roof images with a low average IoU and 

AP included roof images with leaves, as shown in Figure 5 (right). 

 

5.4 Result of Division in the Additional Experiment 

To handle images with the abovementioned features, we added 160 images with damage 

regions in the boundary (20 original images) and 160 images with leaves (20 original images) 

to train the data. The proposed model was trained using 2720 training data points, 800 

validation data points, and 800 test data points. The right side of Figure 4 shows the transition 

of the loss function of the training and validation datasets. Because an increase in the loss 

function appeared at epoch 600, the training was stopped at epoch 600 with the proposed model. 

As a result, the average IoU of the roof images with damage regions in the boundary was lower 

by 0.0016, and the average AP was higher by 0.0342 compared to that in the first experiment, 

as shown in Table 2. The average IoU of the roof images with leaves was lower by 0.0163, and 

the average AP was higher by 0.0649 compared to that in the first experiment. In both roof 

images with damage regions at the boundary and with leaves, both IoU and AP did not increase. 
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However, the difference between the increase and decrease in both of these values indicates 

that the accuracy of the division of these images improved to some extent. 

 

5.5 Image Processes after Division 

 

Figure 6.  Example of divided roof surface data image 

 

There were many overlapping regions with multiple estimated regions and overlooked 

regions that were not estimated to be roof surfaces.  

In overlapping regions, many regions with large areas expanded to regions with small areas. 

To remove overlapping regions, we selected the smallest region of overlapping regions and 

excluded the others. To compensate for the overlooked regions, we expanded the estimated 

regions to all sides at the same speed after removing overlapping regions. Roof surface images 

were generated after these two processes, as shown in Figure 6. 

 

6. CLASSIFICATION OF DEGREE OF DAMAGE 

 

6.1 Used Data 

Roof surface image data created by division of the roof surface have a low resolution because 

the image of the roof from which the roof surface is divided has a resolution of 20 cm. Therefore, 

it is difficult to determine the degree of damage of these images in detail. Thus, we have 

constructed a model that classifies five classes of roof surfaces: no damage, damage (-25 %), 

damage (25–50 %), damage (50–75 %), and damage (75%). The corresponding image data 

were generated as shown in Figure 7. 
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Figure 7. Breakdown of data used in classification of degree of damage 

 

In this study, we used 30 roof images, each with and without damage, as the test data. Of the 

30 roof images with damage, we selected roof images with different degrees of damage to 

obtain various damage types. Then, we divided the images with damage using the division 

model described in Section 4, and requested the staff in the Department of Crisis Management 

of Shimanto-town, Kochi Prefecture, who have an experience of building damage investigation, 

to input the correct label of damage degree to 208 divided images. In this study, 684 roof 

images with damage and 500 roof images without damage were used as the training and 

validation data. A total of 4,392 roof surface images were obtained from roof images with 

damage. These were fed as input labels of the degree of damage in reference to the labels of 

the test data and investigation manual. 

Consequently, this model could generate 

2,171 roof surface images with damage from 

684 roof images with damage, indicating that 

the training data could be increased by 3.174 

times. In this study, the number of data points 

of each class in the training and validation 

data was equal by horizontal flipping and 

rotation. Additionally, in roof images 

without damage, we selected one roof 

surface from each roof to obtain various 

types of roof data. Figure 8 shows examples 

of images of damaged roof surfaces. 
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No damage(2660)

Damage(4881)

Roof surface image(208)

Trimming roof data

Roof surface image(164)

Roof surface image(4392)

Roof surface image(2660)

Damage(25-50%)(872)

Damage(50-75%)(992)

Damage(75%-)(1160)

Damage(1103)

Damage(-25%)(268)[validation]

Damage(-25%)(1074)[train]

Damage(25-50%)(174)[validation]

Damage(25-50%)(698)[train]

No damage(221)[validation]

No damage(882)[train]

Damage(75%-)(232)[validation]

Damage(75%-)(928)[train]

Damage(50-75%)(198)[validation]

Damage(50-75%)(794)[train]

Trimming

Division of roof surface

Division of roof surface

Division of roof surface

Division of roof surface

Select one roof surface from one roof

Horizontal flip

Rotation

Horizontal flip

and rotation

Figure 8.  Examples of image of roof surf with 

damage (damage (-25 %), damage (25–50 %), 

damage (50–75 %), damage (75%)  

ordered from left to right) 
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6.2 Training Method 

We used ResNet50 (He et al. 2015) to classify the degree of damage, which is one of the 

most accurate classification models. We trained ResNet50 using the data described in the 

previous subsection. The batch size was set to 16, the size of the input image to 256×256, and 

the loss function to cross-entropy loss. It took 5 h and 56 m to train this model using the GPU 

GeoForce GTX 1060 6 GB of NVIDIA for 200 epochs. Figure 9 shows the transition between 

the loss function and the accuracy. 1 epoch represents 274 times of training. This represents 

the total number of times training was provided to all data simultaneously. Figure 9 indicates 

that the training was stopped at epoch 500 when the accuracy was high and the loss function 

increased. 

 

 

Figure 9. Left: loss function and right: accuracy. Orange line: transition of training data and blue 

line: transition of validation data (moving filter) 

 

6.3 Classification Result 

Table 3. Confusion matrix of classification of damage degree 
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Times of training(epoch)
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(-25%)
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(25-50%)
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(50-75%)

Damage

(75-%)
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No damage 181 15 9 4 0

Damage(-25%) 42 29 19 6 6

Damage(25-50%) 8 5 5 5 5

Damage(50-75%) 6 1 3 3 1

Damage(75%-) 5 2 4 4 4 Average Recall

Recall 0.7479 0.5577 0.1250 0.1364 0.2500 0.3634
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Table 3 presents the confusion matrix of the estimation results of the test data. The recall of 

image data with damage, particularly for damage (25–50 %), damage (50–75 %), and damage 

(75 %), was lower than image data without damage. Additionally, degree of damage of image 

data with large damage, such as damage (25–50 %), damage (50–75 %), and damage (75%) 

were underestimated. 

In these underestimated image data, there were many roof surfaces that reflected little 

damage in the image, but collapsed overall or reflected only the damaged part. These examples 

suggest that the data were judged not only from the roof surface of the target but also from 

other roof surfaces when the label of the damage degree of the test data was fed as input. 

Therefore, the model underestimated the degree of damage because it was trained and 

estimated based only on information from the roof surface of the target. Additionally, using 

aerial photos with low resolution as inputs to the label of the degree of damage probably 

resulted in the mixing of individual subjects in the judgment criterion. This implies that the 

difference in judgment criteria between the staff of the local government inputting labels of 

test data and training data caused low recall of image data with large damage. 

 

7. CALCULATION OF DAMAGE RATE 

 

7.1 Calculation Method of Estimated Damage Rate 

In this study, the value of the degree of damage was assigned to each class classified in 

Section 5. The values of no damage was set to 0, damage (-25 %) to 0.125, damage (25–50 %) 

to 0.375, damage (50–75 %) to 0.625, and damage (75 %) to 0.875 as degree of damage. Then, 

the model multiplied these degrees of damage by the area rate and summed the values of every 

roof surface to calculate the damage rate of the roof. The area rate of the roof surface was 

calculated by dividing the number of pixels of each roof surface by the number of pixels of 

the entire roof. 

 

7.2 Comparison of Correct Damage Rate and Estimated Damage Rate 

The model estimated the damage rate of 30 images of the roof with damage and 30 images 

without damage to the test data using the above calculation method based on the degree of 

damage of each roof surface estimated in Section 5. The coefficient of determination between 

the correct and estimated damage rates was 0.3445. The coefficient of correlation was 0.6486, 

the average error was -5.401, and the average absolute value error was 11.07. Figure 10 shows 

a scatter diagram of the correct and estimated damage rates. The average error of the images 

of the roof with damage was -13.44 and that of the images without damage was 2.461. 

For images of the damaged roof, the average error indicated that the model underestimated 

the damage rate. This was owing to an underestimation of the classification of the degree of 
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damage in Section 6. Similarly, for the images of the roof without damage, the average error 

indicated that the model estimated multiple data as little damage and only 12 of 30 images as 

no damage. This is because, the model incorrectly calculates the damage as a whole if the 

classification model estimates even one roof surface without damage as damage. Therefore, 

the model must increase the recall of no damage in the classification of the degree of damage. 

 

 

Figure 10. Scatter diagram of correct damage rate and estimated damage rate 

 

8. EVALUATION OF SYSTEM EFFECTIVENESS 

 

8.1 Result of Evaluation 

Table 4.  Question and answer to each roof data 

 

 

 

True damage rate (%)
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Answer choices It can. It cannot. total

By using aerial photos, can this

system present the part which

cannot be seen from outside?

60(100%) 0(0%) 60

Answer choices
It can advise perfectly and 

improve efficiency.

It can advise partially and 

improve efficiency.

It can estimate no 

damage roof to be ”No 

damage” class.

It has too much mistaken 

advice and cannot 

improve efficiency.
total

To improve efficiency in the 

investigation, can this system 

advise to investigate the part with 

high probability of damage?

16(26.67%) 32(53.33%) 12(20.00%) 0(0%) 60

Answer choices

It is as accurate as 

investigator judging from 

aerial photos

and the ground.

It is more accurate

than investigator judging 

from the ground.

It is as accurate 

as investigator judging 

from the ground.

It is more inaccurate 

than investigator judging 

from the ground.

total

How accurate is it? 15(25.00%) 3(5.000%) 30(50.00%) 12(20.00%) 60
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To evaluate the effectiveness of the three usages (Table 1) of the proposed system in building 

damage investigation, we framed three questions for the staff of the Department of Crisis 

Management of Shimanto-town as shown in Table 

4 for each of the 60 images of the roof surface 

estimated by the proposed system and obtained the 

relevant answers. The answers were based on the 

images of the roof shown in Figure 11, correct 

damage rate, and estimated damage rate. The image 

on the left of Figure 11 shows the image of the roof 

with a width of 3 m from the trimming roof image, 

and the right image shows the trimming image of 

the roof, which visualizes the estimated degree of 

damage of each roof surface. 

The first question is “by using aerial photos, can this system present the portion that cannot 

be seen from outside?” The answer was “It can.” with 100 %. Therefore, this system can present 

information about the part of the roof that cannot be seen from outside by using aerial photos, 

which is the first usage of the system. This indicates that the proposed system can improve the 

efficiency and accuracy of investigations. The second question is “to improve the efficiency of 

investigation, can this system advise to investigate the part with high probability of damage?”. 

The answer was “the system provides incorrect advice and cannot improve efficiency” with 

0 %. There were 18 roof data points without damage that the system estimated as a damage of 

a few percent by mistake. However, the answers of all of these 18 roof data were not “It has 

too much mistaken advice and cannot improve efficiency.” but “it can advise partially and 

improve efficiency”. According to the respondent, the system presented information about the 

roof surface without damage and could improve the efficiency of the investigation. Therefore, 

this system can present information about roof parts with a high probability of damage and 

advise investigation to investigators, which is the second usage of the system. This indicates 

that the proposed system can improve the investigation efficiency. In the evaluation of this 

model, it is desirable to quantitatively compare its accuracy with the accuracy of the 

investigation by an investigator who looks at the roof from the ground or from the ground and 

aerial photos. However, it is difficult to obtain these data. Thus, the staff were advised to 

classify the estimated accuracy of each roof data into four classes, such as “equal to 

investigators who look at the roof from ground and aerial photos,” “(lower than the above and) 

higher than the investigator who looks at the roof from ground,” “(lower than the above and) 

equal to the investigator who looks at the roof from ground,” and “lower than the investigator 

who looks at the roof from ground” to qualitatively evaluate the accuracy. This indicates that 

the proposed model can calculate the damage rate of 30 % of roof data more accurately than 

the investigators who look from the ground, which is a conventional judgment method, and 

that of 80 % of roof data is the same accurately or more than the investigators who look from 

the ground. 

Figure 11.  Roof data used for framing 

questions 
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We asked additional questions about the overall system. First, “can this system show basis 

for judgment of calculation result by obtaining estimation of degree of damage of each roof 

surface?” The answer was “It can.” Therefore, this indicates that the proposed system can 

interpret the estimation using a deep learning model, which is a black box model, by calculating 

and visualizing the degree of damage to each roof surface. Next, “under which conditions can 

you use the estimated damage rate as the investigation result directly?” The answer was, “We 

cannot use the estimation directly if the roof is damaged because we need to understand the 

feelings of the victim. Hence, the presence of damage must be verified manually.” Another 

answer was that “investigating the roof in the field is necessary because it is difficult to judge 

damage from the data used by the system” and “estimated damage rate is useful for reference 

data.” Therefore, these results indicate that the calculated damage rate of the roof cannot be 

used for building damage investigation directly without a human check; however, the damage 

rate estimated by using the proposed system is useful for reference data. 

 

8.2 Usage Flow of Our Proposed System 

 

Figure 12.  Usage flow of the system in the investigation field 

 

Considering the results presented in the previous subsection, the usage flow, shown in Figure 

12, incorporating the three usages mentioned in Table 1, can be considered. First, focusing on 

the roof parts with a high probability of having a high value of image visualizing the estimation 

of the system, the information from the field and aerial photos were investigated. Then, with 

reference to the damage rate estimated by the system, the calculated degree of damage was 

compared and confirmed to determine the final degree of damage. This indicates that the 

investigation can be more rapid and accurate in the red regions of Figure 12, using both the 

second and third usages as reference data. 

Damage rate

Aerial photos

Field information

Images visualizing 
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Estimated damage rate(%)

Final result
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Check roof surfaces 

with estimated damage
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8.3 Map of Damage Estimation 

 

Figure 13. Left: map of building damage (Miura et al. 2020) and right:  

map of damage estimated by this system 

 

We estimated the damage rate of the image of the roof of 3,513 buildings around the 

government office of Mashiki town in Kumamoto prefecture using the proposed system and 

plotted it on the map, as shown on the right side of Figure 13. Let d be the degree of damage 

estimated using this system. The value of d≤10 % is set to light blue, 10 %<d≤20 % to yellow-

green, 20 %<d≤30 % to yellow, 30 %<d≤40 % to orange, and 40 %<d≤50 % to red. The larger 

the damage rate, the larger the point size set on the map. The left side of Figure 13 shows the 

actual damage map (Miura et al. 2020), and the data in the area surrounded by the dotted line 

reflect the results of the on-the-spot investigation by the Architectural Institute of Japan. These 

maps were compared to identify common areas, such as areas where the damage was 

concentrated. Because this study focused on roof damage and Miura et al. (2020) focused on 

whole building damage, an accurate comparison of the accuracy is not possible. However, 

according to Figure 13, rough spatial distributions between these maps are similar. 

We believe that this map is effective in grasping the necessary resources, such as manpower 

for investigation or deciding the method of investigation. This indicates that the map is 

effective in grasping the overall damage in the entire area, as well as on the roof. Additionally, 

it is likely that this map is useful not only for building damage investigation but also for 

decision-making regarding the first response after a disaster or deciding the rehabilitation plan. 

 

9. CONCLUSIONS AND FUTURE RESEARCH 

 

In this study, we developed a system to automatically calculate the damage rate of a roof and 

suggested its usage to improve the speed and accuracy of building damage investigations. 
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A drawback of our previous study was that the aerial photos captured were insufficient as 

training data for the estimation of damage using deep learning from aerial photos (Fujita and 

Hatayama 2021). Therefore, this study divided the roof images into roof surfaces and increased 

the amount of training data. We developed an automatic method to calculate the damage rate 

of a roof from four processes: a trimming algorithm to automatically create roof images, 

dividing the roof surface by instance segmentation using the deep learning model, classification 

of the degree of damage by the image classification model of deep learning, and calculation of 

the damage rate from the degree of damage and area rate. 

The effectiveness of this system was evaluated based on its capability to present information 

of the parts that could not be seen by the investigators using aerial photos, which is the first 

usage, and highlight parts with a high probability of damage to the investigators, which is the 

second usage. Moreover, this model could calculate the damage rate of 30 % of roof data more 

accurately than judgment from ground and that of 80 % of roof data with the same accuracy or 

more than judgment from ground. We then suggested the usage flow of this system in building 

damage investigation based on the answers provided by the staff to the questions framed by us. 

Additionally, we observed that the map shown on the right side of Figure 13 for plotting the 

estimation result of this system was effective for estimating the overall damage. This indicates 

that the proposed system is effective for both the estimation of local damage, representing the 

damage rate of one roof, and overall damage, representing damage to the entire area. 

In the future, a more accurate system can be developed based on the following 

improvements: 

• Information around the target roof surface is added to the input value of the model to 

classify the degree of damage.  

• Increase the recall of roof data without damage in the classification of the degree of 

damage.  

• Generate more general training data based on the label inputs of several individuals. 

• Address roof data with a gap in the building polygon and low resolution.  

In addition, the use of image data of roofs damaged by typhoons may be effective as training 

data. There may be common features, such as dropped tile roofs, between earthquakes and 

typhoons. However, the presence of different features may decrease the accuracy of deep 

learning models. Therefore, a fine-tuned model that uses earthquake image data after training 

with typhoon image data may be effective. This study needs to confirm the increase in accuracy 

by performing fine-tuning. In addition to image information, information such as earthquake 

acceleration, building type, and the raw material of the roof may be effective. Because neural 

networks can be trained using this information as input data, this study needs to consider the 

development of a multimodal model. 

Moreover, we found that the estimation results of this system cannot be used directly in the 

field of building damage investigations. This indicates that it is difficult to use a deep learning 
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model for decision making because it lacks reliability and explainability. This is a limitation 

specific to deep learning or machine learning systems during disasters as well as a lack of 

training data. In the future, we aim to design a usage to improve the reliability and 

explainability of the model and ensure responsibility by combining the efforts of the systems 

and humans. 
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