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Abstract Generating well-informed and reliable predictions for disaster evacuation is a large 

challenge. Crisis and disaster management policymakers have to deal with poor data quality, a 

limited understanding of households’ behaviour dynamics, and uncertainty regarding the 

effects of the various actions/measures in place. Agent-based simulation models are frequently 

used to support decisions when planning disaster evacuation procedures. However, one of the 

most important aspects of this issue, which is social influence, is not often considered. Most of 

existing evacuation models largely overlook the importance of the households’ behaviours and 

social influences, which leads to oversimplified models. Moreover, it is almost impossible to 

find models in the literature that focus on the extrinsic decision-making factors of some 

evacuees, such as compromised lifelines, in the case of catastrophic events. In contrast to the 

existing evacuation models, this paper suggests a probabilistic agent-based model that relies 

on the loss of different lifelines as factors affecting evacuees’ decision-making in addition to 

some intrinsic factors that are used to characterise the propensity of households to evacuate 

and explicitly allow for social contagion as well as uncertainties to be considered. This model, 

in which all the variables are considered uncertain and Monte Carlo Simulations are run to 

estimate the confidence range of the predictions, is tailored to estimate the potential number of 

inhabitants that have not been evacuated in high-rise buildings in the face of critical 

infrastructure failures induced by a slow-onset flood and/or the actions taken during the related 

crisis, considering different uncertainties that may affect the reliability of the prediction. The 

model has been specifically designed to predict the dynamics of households’ self-evacuations 

in fourteen residential high-rise buildings located in a flood-prone area in Paris. This paper 
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describes the suggested model and also reports the results of an illustrative case study in which 

three scenarios are simulated to demonstrate the applicability of the model, to test its 

effectiveness and to explore the uncertainty regarding some modelling assumptions using 

sensitivity analysis. 

Key words: Agent-based modelling, uncertainty, evacuation, social influence, flood, high-rise 

buildings 

 

 

 

 

1. INTRODUCTION AND BACKGROUND 

 

In light of the recent natural disasters throughout the world, governments and academics are 

gradually becoming aware of the vulnerability of the territories affected by these disasters. This 

awareness is even more important when the vulnerability could be increased by the cascading 

effects resulting from the level to which critical infrastructures are interconnected. Cities have 

started to anticipate the potential damage of major events and to identify appropriate 

management strategies to effectively cope with these disasters in the future to achieve their 

resilience objectives, including the safety and the well-being of the population.  

From this perspective, ensuring the resilience of Paris and the Ile-de-France region against 

a major flood of the Seine river is one of the crucial challenges of the public authorities and 

risk management decision-makers. According to the OECD (2014a), “a major Seine flood 

would today have important potential impacts on well- being, and on the activities of the 

government and businesses”. Indeed, experts estimate that a flood of the Seine river and its 

tributaries of the magnitude of the historic event of 1910 will cost at least thirty billion euros 

and affect up to 5 million residents (OECD, 2014b). During this historic flooding, the water 

level exceeded 8 m at the Paris-Austerlitz measuring station and rose over a period of 10 days, 

with receding occurring over a period of more than a month. Currently, a flood of this 

magnitude is estimated to be a 100-year flood.  

Such an event would lead to long lasting damage and cause severe impairment to technical 

networks (electricity, sewage, transportation, urban heating and cooling systems, etc.). For 

instance, the power distribution would be significantly disturbed, as more than 377,000 

domestic and business customers in Paris would experience power cuts, while an important 

part of road network could be blocked, making it impossible to travel from one bank to the 

other. There would also be thousands of residents who would undeniably seek evacuation. To 

date, at least 290,000 people are living within the potential evacuation zone reported in the 

Seine Basin (Fujiki, 2017). The serious flooding events in May-June 2016 and January-

February 2018 that impacted the Seine Basin, during which some people were evacuated from 

their homes while others stayed in their homes without electricity (Longjumeau, Gournay, etc.), 

are reminders of the degree of vulnerability of the Ile-de-France Region. Consequently, it 

seems advisable to seriously consider that a mass evacuation may occur in the case of a major 



IDRiM (2020) 10 (2)        ISSN: 2185-8322 

DOI10.5595/001c.18160 

 

 37 

flood of the Seine, which would lead to a chronic reduction in the well-being of the people 

involved. 

Therefore, public authorities and decision-makers started questioning their ability and 

preparedness to cope with a probable evacuation of people living within the potential 

evacuation zone, including the number of people to care for, shelter availability and locations, 

evacuation routes, etc. (Fujiki & Laleau, 2019). Designing appropriate evacuation plans is a 

crucial aspect of disaster preparedness. It is an extremely challenging task that implies 

responses to the following questions: who, when, where and how to evacuate? These responses 

will provide the information required to better plan the operational implementation of an 

evacuation. Thus, one of the most important steps of a potential evacuation plan in Paris is the 

estimation of the number of residents who must be evacuated over time to provide estimates 

for designing strategies to respond to the appropriate number and location of these residents.  

We present herein an agent-based model for estimating people’s decisions to evacuate by 

their own means. This study attempts to provide a tool for understanding the following 

question: “how many residents would decide to stay home under slow-onset major flooding 

that is not life-threatening to the residents but is lifeline-compromising?”. The model was 

developed to help risk managers in the dynamic prediction of households’ self-evacuation 

decisions in the face of the reduction of their well-being following a slow-onset flood involving 

cascading disruptions of critical infrastructures. This work was conducted under the RGC4 

project3, which aimed to develop operational tools to cope with technical network failures at 

the grand Paris scale to improve the resilience of the Paris urban area against extreme floods. 

While the main objective of this work is the estimation of people remaining inside their 

dwellings at a given time during a flooding disaster, it also aims to address three research 

questions.  

First, it considers the effect of social contagion among neighbours, relying on the assumption 

that social contagion will contribute to spreading the decisions of the households that chose to 

leave their dwellings among their neighbours and, thus, lead to more households to evacuate 

(Riad et al., 1999; Kakimoto & Yamada, 2014; Bangate et al., 2017). Second, it assumes that, 

in the case of a chronic disaster leading to the reduction of the households’ welfare, their 

decision to evacuate or not could be influenced by their living conditions. To the best of our 

knowledge, most of the existing studies modelled the evacuation decision considering mainly 

(recommended or mandatory) evacuation orders issued by authorities and/or signs presaging 

the imminent onset of the hazards as decision-making triggering event(s). The existing research 

has not addressed modelling evacuation with regard to the reduction of the households’ well-

being due to the loss of lifelines provided by the technical networks as a triggering factor of 

their decisions to evacuate (Tobin et al., 2011). Thus, the model is developed considering the 

failures of technical networks as evacuation decision triggering events. It is assumed that these 

events could occur solely or simultaneously with others due to cascading effects or not. It, 

therefore, investigates the appropriate approach to combine their effects on the households’ 

decisions to obtain more robust outcomes. Finally, it implicitly accounts for the uncertainty 

 
3 https://anr.fr/Project-ANR-15-CE39-0015 
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associated with the input data and the simulation running outputs, while most of the other 

evacuation models do not necessarily integrate uncertainty into their reasoning (Ronchi et al., 

2013; Tavares & Ronchi, 2015).  

The proposed model is a probabilistic model so that various uncertainties about the quality 

of data, the heterogeneity of households, the evolution of the households’ environment 

(occurrence time of the evacuation triggering events), etc. can be considered. The proposed 

model allows the running of Monte Carlo simulations to improve its performance through 

sensitivity analysis and also deals with a slow-onset hazard, which is contrary to most studies 

on the evacuation of people, which mainly focus on fast kinetics hazards, such as hurricanes, 

fire, industrial or nuclear accidents, etc. The target site of this evacuation model is the batch of 

residential high-rise buildings located along the Seine within the 15th district in Paris, mainly 

because they are the most densely populated residential buildings within the flood prone area 

within the Seine basin. It is assumed that the target residents have the same characteristics as 

most of the residents of the Ile-de-France Region (Fujiki, 2017), i.e., three persons in four are 

motorised and approximately 90% could ensure their self-hosting (secondary residence, hosted 

by parents/friends/relatives, hotels, etc.). Some of these characteristics are used in the model 

as intrinsic evacuation decision-making factors to estimate the residents’ propensity to evacuate 

by their own means. 

Although this model investigates the evacuation decision-making process of households 

living in high-rise buildings, it will not focus on the choice of escape route, the evacuation 

speed, the escape behaviour (collaborative vs. competitive) or the evacuation completion time, 

as in the few studies targeting high-rise buildings, but will account for the social influence 

among residents, as well as the combination of the effects of more than one evacuation 

triggering event. The uniqueness of the suggested model lies in the emphasis on social 

contagion of evacuation decision-making among neighbours, the linking of evacuation-

decision making to the loss of one or more lifelines as evacuation decision-making factors 

besides some evacuees’ intrinsic characteristics, which are commonly used in evacuation 

modelling, and the explicit consideration of uncertainty through a probabilistic approach. 

The remainder of this paper is structured as follows. Section 2 is devoted to a state of the art 

household evacuation decision modelling using agent-based modelling. Section 3 describes the 

model developed towards obtaining the goal of this study. Section 4 presents and discuss the 

results of a demonstrative example to examine the applicability and the effectiveness of the 

proposed model. Finally, conclusions are drawn in section 5. 

 

2. STATE OF THE ART ON AGENT-ORIENTED EVACUATION MODELLING 

 

Due to the variety of hazards, factors influencing evacuation (decision or completion), 

modelling approaches and evacuation aspects investigated (information dissemination and 

warning, logistical concerns, mode choice, route and destination selection, timing, total 

demand, traffic assignment, zoning, etc.), a significant amount of work is done on evacuation 
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modelling. This section provides an overview of the determinants of households’ evacuation 

decisions and the use of agent-based modelling in the households’ evacuation decision. 

 

2.1 Factors influencing a household’s decision to evacuate in the face of a natural 

disaster 

Studies on whether to participate in an evacuation are mainly carried out from the individuals’ 

or households’ point of view. Generally, empirical studies or logistic regression models 

constructed on the basis of survey data are used to determine the factors influencing evacuation 

decision-making. A review of the evacuation literature shows that several factors could lead 

households to decide whether to evacuate an area threatened by a hazard (Dash & Gladwin, 

2007; Ahsan et al., 2016). They could be of an intrinsic nature and an extrinsic nature. In short, 

the ability or propensity depending mostly on their intrinsic factors (Rabemalanto et al., 2020) 

and the willingness of households to evacuate are the main characteristics that can facilitate or 

hinder their evacuation decisions. Because the significance of the influence of these factors on 

the households’ decisions could vary depending on the context (Murray-Tuite & Wolshon, 

2013), identifying households likely to evacuate can prove complex (Wright & Johnston, 2010). 

The intrinsic factors involve the households’ socio-demographic characteristics, such as the 

household size (Luathep et al., 2013), the presence of vulnerable people, such as children, 

senior citizens or persons with disabilities (Lim et al., 2016), the ownership of and access to a 

vehicle (Wright & Johnston, 2010), the access to an available relocation place (Chang et al., 

2009), the presence of pets (Solis et al., 2010), etc. The socio-demographic information 

contributes to the modelling of the behavioural features of the households at a particular 

location at a given time. Although the propensity to evacuate is not sufficient to predict the 

households’ evacuation decisions successfully, it is a key parameter in the modelling of their 

willingness or reluctance to self-evacuate. The lower the propensity, the higher the need to be 

cared for by public authorities or emergency services during an evacuation. Apart from socio-

demographic characteristics, the intrinsic factors may include people’s risk perception (Jumadi 

et al., 2018).  

Researchers also identified the following extrinsic factors related to households’ evacuation 

decision-making processes: communication/information concerning the risk (Wright & 

Johnston, 2010), influence of the society in which the households live, such as following the 

example of their neighbours after observing them evacuate (Lindell et al., 2005; Nagarajan et 

al., 2012), environmental cues, such as sights, smells or sounds, indicating the onset of the 

hazard (Lindell et al., 2015), liveability or not of their dwellings and neighbourhood resulting 

from disruptions of lifelines provided by technical networks (Chatterjee & Mozumder, 2015), 

etc. Although some attention is being given to the loss of lifelines as a determinant for disaster 

evacuation (Kailes & Enders, 2007), only a few works tried to identify the influence of the 

various technical networks on the households’ decision in the face of disasters. It has been 

found that power supply is one of the most vital technical networks, the failure of which can 
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greatly affect the well-being of households (Schultz et al., 2003; Reed et al., 2010; Nateghi et 

al., 2011; Chatterjee & Mozumder, 2015). 

Although previous studies prove that the households’ evacuation decisions depend not only 

on their own characteristics or on the features of the hazard but also upon their external 

environment, generally, most evacuation cases are modelled considering that the evacuation 

process is triggered mainly by the onset of a hazard and/or the issuance of evacuation orders 

(Han et al., 2007; Fang et al., 2011; Madireddy et al., 2011; Zale & Kar, 2012; Song & Yan, 

2016). By doing so, the models ignore the possibility that the households’ decisions may be 

influenced by their external environment. The developed model aims to address this gap by 

integrating technical failures as potential triggering events of the evacuation decision process. 

 

2.2. Agent-based modelling in disaster evacuation engineering 

A plethora of studies exist on disaster evacuation modelling thanks to the increasing level of 

realism provided by simulations. Agent-based modelling (hereafter ABM) is one of the most 

used approaches to this end (like in the studies of Chen & Zhan, 2008; Christensen & Sasaki, 

2008; Hawe et al., 2012; Mostafizi et al., 2017; Ukkusuri et al., 2017; Kasereka et al., 2018; 

Olsvik et al., 2018; etc.). Agent-oriented models allow the behaviours of heterogeneous 

individual components of a complex system, which function autonomously to achieve their 

specific desired objectives in a common environment through mutual environmental 

interactions, to be described (Albino et al., 2007). Each individual component or agent has its 

own characteristics, states and objectives. The agents are also able to make their own decisions 

and update their state while relying on defined rules. According to Nikolic & Kasmire (2013), 

ABM enables the possible complex and non-linear variations in the state of a system, across 

time and space to be investigated to derive and understand the plausible futures, trends, 

tendencies or behaviours that can occur under specific circumstances. One of the main 

strengths of ABM is its flexibility; the agents’ attributes/goals/behaviours and modelling 

assumptions are easily changed to test several cases. Rangel-Ramirez et al. (2019) stated that 

although agent-based models “do not capture all aspects of human and social behaviour in risk 

situations such as grouping, social cohesion, decision-making under stress, aiding and 

collaborative behaviour, etc.; this is the presently most adequate modelling scheme for the 

representation of human behaviour during evacuation scenarios”. ABM is, thus, particularly 

well-suited for this work due to the difficulty of determining the choice of a random population 

of households to stay or to leave when they receive evacuation orders and/or when their living 

conditions are worsened by the a slow-kinetics flood associated with technical network failures. 

However, it is worth noting that ABM is a random approach by nature. Thus, the studies 

based on ABM could be inherently limited by the quality of the data. Generally, the existing 

agent-oriented models address the different aspects of evacuation modelling deterministically 

and do not necessarily account for the natural variations in the modelled agents’ population, 

while the evacuee behaviours are commonly judged as the largest uncertainties (Wang et al., 

2020). Indeed, most often, apart from the localisation of the agents, agent-based models 
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consider homogenous characteristics (Rangel-Ramirez et al., 2019), which makes it difficult to 

properly calibrate the models, to incorporate observational data into the models (thus, they lack 

the diversity that exists in the real world) and to quantify the uncertainty in the outputs. In fact, 

evacuation plans or strategies can be effective only to the extent that managers actually use the 

available information to make their decisions. In places where the households’ characteristics 

are heterogeneous, the households’ decisions might vary considerably. 

To the best of our knowledge, only a few evacuation modelling studies attempt to fill this 

gap by accounting for uncertainty in various ways. For instance, Fraser et al. (2014), who 

suggested a method incorporating, among other parameters, an uncertain evacuation departure 

time into an existing anisotropic least-cost path distance framework, handled the uncertainty in 

the evacuation time by running 500 simulations of evacuation times for each scenario and for 

each individual agent in the population to generate an average evacuation time. Liu et al. (2012), 

Lv et al. (2013), and Rangel-Ramirez et al. (2019) adopt probabilistic approaches to deal with 

uncertainty. In line with these few studies which account for uncertainty in the evacuation 

modelling, this work proposes a probabilistic model intended to systematically address the 

uncertainty in the input data and to provide possible values for the evacuation demand in 

various scenarios. 

 

3. PRESENTATION OF THE DEVELOPED MODEL 

 

This section provides a description of the developed prototype model that can be used as a 

potential training or decision-support tool by the Parisian crisis management services. The 

model is implemented in Mathematica and allows geographical coordinates to be imported to 

delineate the simulation environment through a 2D representation of each building within this 

environment. The model encompasses two major modules that are not editable by the user: 

study area and hazard modules. However, one could adapt the model to his own specific needs 

by introducing information describing the desired simulation outline and/or hazard. As a 

probabilistic model, it relies on a random sampling of almost all the variables by drawing from 

defined distributions (mainly uniform and normal shapes), except for the calculation timestep. 

Any instantiation and any simulation are thus unique and may give results differing from each 

other. Moreover, it is designed to run a single simulation, as well as Monte Carlo simulations 

while keeping in mind that a large number of a single simulation outcomes need to be studied 

to obtain a more realistic view of the households’ behaviours and improve the confidence in 

the obtained results through statistically meaningful insights. 

 

3.1 Presentation of the target site 

Although the model is expected to be applicable to any evacuation situation due to the 

studied hazardous conditions, this first version has been developed for a specific area in Paris. 

The target area, representing the environment module of the model, corresponds to the 15th 

district in Paris. This flood-prone area situated on the Seine waterfront (Figure 1a) is 
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characterised by a spatial concentration of approximately twenty high-rise buildings, of which 

14 are of private residential use, making this the most densely populated area in Paris (INSEE, 

2016). It is worth noting that the model is intended to study the evacuation of the households 

facing chronic disaster impacts resulting from slow-kinetics flooding. Thus, only the 14 

residential buildings classified into two categories (11 co-ownership buildings and 3 social 

housing buildings) are selected. These towers of 20 to 30 storeys (Figure 1b) consist of a total 

of 3,175 apartments and house approximatively 10,000 residents.  

 

 

(a) 

 

 

(b) 

Figure 1.  Outline of the evacuation model:   

(a) Flood risk zoning in the 15th district of Paris; (b) High-rise buildings 

Se
in

e 
riv

er

Legend



IDRiM (2020) 10 (2)        ISSN: 2185-8322 

DOI10.5595/001c.18160 

 

 43 

In these buildings, all the inhabited apartments are above the 4th floor. Consequently, they 

are above the highest water level predicted for a major flood of the Seine and the flood water 

will not enter them. Furthermore, there will not necessarily be any drownings, injuries, or 

fatalities due to the direct impact of the flood. However, because the towers have four levels of 

parking lots, two of which are located on two underground floors (with a height of 

approximately 3 meters each, they are at – 6 and – 3 meters in relation to street level), water 

could penetrate underground car parks, mainly by dynamic capillary rise in the foundation 

walls. These towers are, therefore, vulnerable even before the Seine overflows its banks due to 

rising water in the basement. The car parks must, therefore, be evacuated even before the 

residents. Moreover, the residents could face a decline of their well-being resulting from 

disrupted services and/or reduction in the liveability of their neighbourhood and/or dwelling. 

Specifically, power outages may lead to elevator shutdowns when alternate power supply 

devices are not available. When this situation occurs, these towers must be mandatorily 

evacuated; for safety purposes, the height of the buildings makes it impossible to keep people 

inside. 

 

3.2 The hazard module 

A key component of the model is the hazard because the different evacuation triggering 

events are broken down in a chronological order with regard to the water level at the Austerlitz 

bridge measuring station. For this purpose, a theoretical hydrograph, which mimics as much as 

possible one of the historic flooding experienced in 1910, was generated. Their similarity relies 

mainly on how quickly the maximum crest at the Austerlitz bridge (8.62 m) is reached and on 

their duration, which was approximatively two months of the water level being above the flood 

warning level (which equals to 3.4 m) with a height of approximately 6 m. The hazard module 

consists of a numerical approximation of the theoretical hydrograph generated. This function 

allows the time or the height to be automatically estimated when the height or the time is 

provided, respectively. This function is the basis for the activation of the events on which 

evacuation decisions could be based when their trigger level is reached. To account for 

uncertainty, the envelope brackets provided at each point of the hydrograph indicate the lowest 

and the highest possible water levels. 

 

3.3 Description of the agents 

The main objective is to predict the number of people remaining in their dwelling (i.e., those 

who will not decide to autonomously evacuate) in the face of a slow-onset major flooding of 

the Seine river. Thus, the agents are households not individuals, and all actions operate only on 

households; the assumption is that when a household decides to evacuate, all the members will 

actually evacuate. Table 1 summarises the agent based-simulation features. 
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Table 1.  Agent-based simulation features 

Feature Description 

Agents Households 

Agent attributes 

Discriminating characteristics providing all the insightful 

information that relates to the households for their decision 

making. They are used to describe each household. 

Agent 

behaviours 

Evacuation decision-making: the households are able to make a 

dichotomous decision (stay at their home or evacuate to a safer 

place). 

For each calculation, the households follow a simple 

probabilistic binary rule by checking if an evacuation triggering 

event has occurred or is currently occurring and by observing the 

current state of their neighbours’ dwellings (either 0 for 

evacuated/non-occupied or 1 for non-evacuated/ occupied).  

When they decide to evacuate, the state of their apartment is then 

updated to 0.  

Interaction 

among agents 

It relies on the social influence between households. The 

interaction rule is that the probability for a household to evacuate 

is increased by a defined factor when a given rate of its 

neighbours that decided to evacuate is attained. 

Observed 

phenomenon 

The model seeks to capture the complex essence of real-world 

households’ evacuation decision-making processes and the 

influential interactions among households. 

It will allow the impact of technical network failures and the 

social influence on the evacuation decision making processes 

within the population located in the flood prone area to be 

observed. 

 

 

The households are heterogeneous and are characterised by the following:  

• an ID number; 

• the building and the floor where their dwelling is located (this contributes to estimating 

the number of their neighbours for each household influence network);  

• their size (the number of persons belonging to households not evacuated will be summed 

up for estimating the remaining people);  

• their typology regarding their propensity to evacuate autonomously. On the basis of five 

household intrinsic factors, which are judged to positively influence the evacuation 

decision according to previous studies (mainly Fujiki, 2017), the households were 
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categorised into three types. These criteria include (1) having a high social index, (2) 

being able to self-host outside the hazard prone area, (3) owning a motorised transport, 

(4) having the capacity/potential to self-evacuate and (5) being aware of the risk 

(consciousness of the real threat on their living area). Using on real socio-demographic 

data of Paris, a fraction of each type in the whole studied population is calculated and 

integrated into the model. The three types of households are termed as follows: 

o The “totally autonomous” category are those households who fulfil all five criteria. 

It is assumed that the higher the propensity to evacuate if needed and the higher the 

level of propensity to evacuate, the more likely that the household will decide to 

evacuate. 

o The “highly dependent” category are those households who do not fulfil most of the 

five criteria. The greater the level of dependence, the lower the propensity to 

evacuate if needed and the less likely the households will be to decide to evacuate. 

o The “moderately dependent” category are those households who do not fulfil a few 

of the five criteria. This type of household is less likely to decide to self-evacuate 

than those belonging to the first category, while being more likely than the highly 

dependent households to evacuate. 

• the state of their dwelling, which can be occupied or non-occupied.  

The social influence among households is examined, relying on the assertion that “while a 

simulation can never capture the complexity of a real event, the effect of social influence in an 

evacuation could be measured by manipulating the proportion of neighbours nearby that have 

decided to evacuate their homes” (Lamb et al., 2012). For this purpose, it is assumed that a 

household can have three types of social influence interactions with its neighbours. Their 

interaction relationship could be horizontal, i.e., when the interacting agents are located on the 

same floor, vertical, i.e., when they live in the same building, and slanted, i.e., when they live 

in different buildings (Figure 2). At this stage, the model considers only the horizontal and 

vertical ones. 

 

 

Figure 2.  Social influence between households in high-rise buildings 
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3.4 Definition of the evacuation decision triggering events 

The evacuation decision-making process does not occur prior to the flooding and begins only 

after a triggering event. The latter is meant as any situation that creates the conditions or 

involves the factors able to influence evacuation decision-making; this in turn, initiates the 

residents’ willingness to evacuate. In evacuation modelling, when an evacuation trigger is 

known by the households, a temporal distribution of the departure times for those that are 

responsive to this specific trigger is estimated to construct a departure or response curve, which 

is also called a mobilisation curve. A response curve represents the proportion of the total 

evacuation demand over time, and it consists of the cumulative percentage of evacuees’ 

departures over the duration of the evacuation initiated by a given trigger and is used in 

evacuation modelling to predict when evacuees will evacuate, should this trigger occur. In the 

real-world, when residents decide to evacuate, they take time to prepare themselves to leave; 

then, they evacuate if their departure is not hindered by any circumstance or obstacles. However, 

in this study, it is assumed that their evacuation is effective as soon as they decide to evacuate.  

It is reported in the literature that response curves are commonly assumed to have a sigmoid 

or “S” shape (Fu & Wilmot, 2004). This shape is because evacuations start slowly, then 

increase rapidly and finally decelerate and gradually become close to nil when the maximum 

ratio of people who choose to evacuate tends to be reached. Evacuation decisions over time 

could follow several distributions, including uniform, sigmoid, Poisson, Rayleigh and Weibull 

distributions (Cova & Johnson, 2002; Kalafatas & Peeta; 2009). As stated by Song & Yan 

(2016), these curves are mainly established empirically by relying on the analysis of the 

households’ evacuation behaviours during past disasters or emergency events. They could also 

be derived from prospective surveys on the households’ intended evacuation behaviours in the 

face of future disasters (Fraser et al., 2013). Some drawbacks to response curves exist, among 

which is the difficulty of predicting them accurately, the insensitivity of such curves to any 

changes in the modelling conditions, which may influence the dynamics of households’ 

evacuation decision-making processes, the questionability of the transferability of a given 

response curve to another evacuation event or a study area different from the one where this 

curve was established, etc. 

In this model, each triggering event is defined by the following: 

• The time of its occurrence or the water level at which it could occur. The same trigger 

could not be characterised simultaneously by both features; the two features could not 

be simultaneously set for an event because they are linked by the numerical 

approximation function used to design the hazard module of the model. When a 

triggering event occurs at a given time and at a specific height, two separate triggers 

have to be considered, relying either on the occurrence time or on the height. 

Additionally, if the same type of event occurs several times during the flooding, there 

must be as many characteristics definitions as there are occurrences. 

• The list of the buildings potentially impacted by its effects. 
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• The response curves associated with of each of the three typologies of households. 

Bearing in mind that the less vulnerable people (most autonomous in the case of this 

study) need less time to evacuate than others (Hofflinger et al., 2019), it is assumed that 

the main response curve (provided by the literature or obtained from an empirical 

survey) will be considered as the one of “totally autonomous” households. The others 

are, thus, obtained by (1) multiplying the evacuation demand of the “totally autonomous” 

households by a reduction coefficient, as well as (2) shifting the origin of this main curve 

to the positive direction of the time depending on the difference among the time at which 

each household type starts to evacuate. 

Most of the existing studies modelled the evacuation decision with regard to the issuance of 

(mandatory or recommended) evacuation orders/instructions (issued by authorities, emergency 

services or any other means), the distance of the evacuees’ locations from the hazard threat or 

the signs predicting the imminent onset of the latter as evacuation triggering events. However, 

it has been proven that these factors could induce evacuation decision-making. Therefore, the 

model is constructed with a series of pre-listed events likely to occur when the water level at 

Austerlitz reaches some known heights and is liable to lead households to evacuate. They may 

be activated by the user by defining their specific characteristics. These triggers are as follows: 

• Recommended order of the evacuation of people. 

• Mandatory order of the evacuation of people. 

• Mandatory order of the evacuation of cars (parked in the towers’ underground parking).  

• Energy supply failure. 

• Urban heating failure. 

• Food supply disruption. 

• Neighbourhood insalubrity. 

• Sewage disposal disruption. 

• Dysfunction of the components of the transport system (traffic congestion, closed roads, 

public transport unavailability, etc.). 

It could be noted that the above list does not include an important evacuation trigger when 

facing flooding, which is having water in the dwelling, possibly due to the specificity of the 

study area (as mentioned earlier; see § 3.1). In addition, one can add more triggering events if 

needed. 

Two main scientific challenges were identified while creating the triggers module. The first 

challenge is the non-availability of the appropriate response curves needed for achieving a good 

level of realism. Indeed, the response curves to be used for each case study must ideally be 

generated in the target area. However, currently, there are no data which describe how Parisians 

living in the studied high-rise buildings (or even how people in Ile-de-France region) evacuate 

(or will evacuate) after the selected triggers are released. Furthermore, the existing curves 
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found in the literature are mainly related to evacuation orders and fast kinetics phenomena 

(mostly hurricanes). This challenge is addressed by defining fictitious curves because, at this 

stage, the main aim is to ensure that the model correctly simulates the households’ behaviours 

that are expected to occur during an evacuation resulting from the conditions studied herein.  

The second challenge is about how to adequately combine the probabilities of evacuation 

decision-making deducted from the response curves of several triggers occurring 

simultaneously. It is assumed that when the situation faced by households becomes worse due 

to a new event, they could change their mind if they have not evacuated already because the 

previous triggers did not sufficiently lead them to express their willingness to leave the area. 

Song & Yan (2016) conducted an empirical study to question the response curve obtained when 

two evacuation orders are issued during a disastrous situation (Figure 3). They found that when 

a second evacuation order is issued 60 hours after the first one, the obtained total evacuation 

demand rises more quickly than the evacuation demand uniquely associated with the first order; 

the greater the number of evacuation triggers occurring simultaneously, the higher the total 

evacuation demand, which justifies the need to combine the effects of triggers.  

 

 
Figure 3. Total evacuation demand curve with different warning degrees (Song & Yan, 2016). 

 

Three ways were identified and investigated. The combination is performed by applying the 

following criteria: 

• the highest decision-making probability among the probabilities of all the triggers 

(“maximum option”). This option means that households decisions are only influenced 

by the trigger that induces the highest evacuation demand;  
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• the probability obtained by summing up the probabilities of all the triggers (“addition 

option”) assuming that the events are mutually exclusive and the intersections of every 

pair of events are empty. That is, the households will decide to evacuate because of 

both events. It should be noted that maximum value of the resulting probability must 

not exceed 1; 

• the “product option”, where the probabilities associated with all the triggers are 

iteratively applied to the households that did not yet decide to evacuate when 

accounting for the influence of the triggers taken one at a time. 

 

3.5. Calculation process 

To describe and scrutinise the households’ evacuation decision-making processes 

conveniently in theory, the related variables are identified and defined in Table 2. The variable 

values used are fictitious and real-world data. The real-world data are derived from the most 

recent data provided by the existing socio-demographic records (mainly INSEE), the critical 

network operators (providing the potential water levels at which their services could be 

disturbed and the areas of the territory that could be sensitive to these disturbances), the 

literature (including studies on the technical network vulnerabilities) and the results of the 

surveys conducted within the ambit of the RGC4 project. The real data are mainly the number 

of storeys and dwellings per building and the number of residents within the study target site 

(approximatively 10,000 persons). The fictitious data are the response curves as, unfortunately 

as far as we knew, no studies exist on the construction on such curves for the study area. To 

remedy this deficiency, a survey has been conducted within the Seine river catchment area after 

the 2016 and 2018 flooding events to attempt the deduction of a response curve for power 

outages. However, the obtained curve is not incorporated into the model, as the curve has not 

yet been validated.  

A 1910-like flooding of the Seine does not necessarily generate stress for households living 

within the study area. Consequently, the model does not account for decision-making under 

stress. In other words, there will not be a short notice for an evacuation and households may 

not be evacuated from a location other than their dwelling; thus, the households are presumed 

to be at home at the beginning of the simulation. By doing so, the model does not account for 

the period of the day (diurnal, nocturnal or rush hours) conditions during the simulation. Each 

household is assumed to make a decision regarding what events trigger them to evacuate, 

should these events occur. The household evacuation decision is assumed to be an irreversible 

process, and once a household decides to evacuate, it would remain evacuated until the end of 

the simulation. It should be noted that the model is not intended for tracking the movement of 

households across space and time in the study area.  

Figure 4 shows the flowchart of the households’ evacuation decision-making model. The 

specific steps of the model running process are as follows:  
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• Step 1: Instantiate the simulation frame. At the initialisation of a simulation, the number 

of people present in the towers results from the non-occupancy rate and the households’ 

sizes. 

• Step 2: Define the ranges of the uncertain values or validate the by-default ranges so that 

a value could be randomly assigned to each variable of the model.  

• Step 3: Select the combination approach 

• Step 4: Run a single simulation. The outcomes are the number of households who do not 

decide to evacuate (occupied apartments) and, subsequently, the number of remaining 

people in each of the 14 studied buildings and at each calculation step. The results are 

presented in the form of (1) interactive tables, (2) interactive 2D maps showing the 

relative spatial distribution of people to potentially care for in the target area (by 

assigning dark red to the maximum value and scaling to the other values in accordance 

as in Figure 5b) and (3) dynamic graphs showing concurrently the chronological 

evolution of the number of remaining persons and the 1910-like flooding hydrograph 

(Figure 5a). One could extract the specific results of a chosen calculation step. 

• Step 5: Define the number of simulations and run them (this step is needed only if one 

wants to run Monte Carlo simulations). The outcomes are the descriptive statistics and 

the statistical distribution of the number of households who do not decide to evacuate or 

the number of remaining residents (this could also be done for each building and at each 

calculation step). 

The current version of the model does not have a module intended to display the animation 

of the simulation dynamics. The model is not able to vividly show the interactions among 

households (a specific building could not been displayed to observe what is happening at each 

storey level; a specific household could not be tracked and its evacuation decision could not be 

visualised as a disappearance, for instance). However, the model is not characterised by an 

aspatial environment given that the buildings are set in a realistic geo-spatial landscape leading 

to their representation on the map as a results visualisation option. 

The interest of modelling all 14 of the buildings instead of focusing on the one building that 

is most typical relies on two main reasons. First, the need of the Prefecture de Paris is to 

know how many people the public authorities would need to care for within the target area. 

Second, the buildings are not similar. Indeed, each of them has its specific organisation and 

given this organisation and the triggers which affect each of them, the need for evacuation 

will differ from one to another. However, when using the model, one could choose to focus 

on the analysis of only one or some of the buildings located in the study area. 
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Table 2.  Variable definitions 

Variable Definition 

Non-occupancy 

rate 

This rate allows the generation of the number of occupied apartments in each 

building at the instantiation of the model because it is assumed that at the moment 

when the disaster begins, not all the apartments are occupied and all occupied 

dwellings have their occupants present.  

By default, it is set to 0.02 but could be user defined (real-world value; the non-

occupancy rate in the 15th district of Paris in 2017 was 8.6 % with around 2% for 

long-lasting non-occupancy).  

Timeslot 

Time interval between two calculation steps. It allows the estimating of the number 

of calculation steps or iterations of a simulation with regard to the duration of the 

flooding event (which equals to approximately two months in the model).  

By default, it is set to 6 hours but could be user defined.  

Household size 

Number of persons belonging to each household.  

Its values are randomly generated and range from 1 to 4 (co-ownership buildings) 

and 3 to 6 (social housing towers) persons. Non-editable values (real-world value; 

the average size of household is 1.81 people in the 15th district but the high-rise 

buildings have highly densified population of approximately 10,000 inhabitants 

and the use of these values allows estimating an initial population within the area 

numerically close to the reality). 

Fraction of non-

occupied 

apartments at the 

storey level 

Ratio of non-occupied apartments located on the same floor in close proximity, 

from which starts the effect of horizontal social influence among households.  

By default, it is set to 0.75 but could be user defined (assumed or fictitious value). 

Fraction of non-

occupied 

apartments at the 

whole building 

level 

Ratio of non-occupied apartments of a tower, from which starts the effect of the 

vertical social influence among households.  

By default, it is set to 0.75 but could be user defined (assumed or fictitious value). 

Decision-making 

probability 

increasing factor 

(storey level) 

Improvement factor by which the evacuation decision probabilities are increased 

when the fraction of non-occupied apartments at the storey level is attained.  

By default, the average value is set to 0.25 and the standard deviation equals to 

0.05. These values could be user defined (assumed or fictitious value). 

Decision-making 

probability 

increasing factor 

(whole building 

level) 

Improvement factor by which the evacuation decision probabilities are increased 

when the fraction of non-occupied apartments at the whole building level is 

attained.  

By default, the average value is set to 0.15 and the standard deviation equals to 

0.05. These values could be user defined (assumed or fictitious value). 

Triggers 

characteristics 

Occurrence: the nominal value of the time OR the water level that induces the 

occurrence of each trigger. 

Evacuation decision probabilities for each type of household associated with each 

trigger; it consists of three lists of the evacuation rates corresponding to all the 

calculation steps following the occurrence of each trigger deducted from the 

response curves. 

Targeted buildings: list of the towers affected by the effects of each trigger. 

Combination 

approach 

Represents the way to combine the evacuation decision probabilities when several 

triggers occur simultaneously. By default, it is set to the “maximum option” but 

could be user defined. 
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Figure 4. Flowchart of the households’ evacuation decision-making modelling 



IDRiM (2020) 10 (2)        ISSN: 2185-8322 

DOI10.5595/001c.18160 

 

 53 

 

(a)  

 

 

(b) 

Figure 5. Samples of simulation result visualisations: (a) Graph of the temporal evolution of a 

scenario; (b) map indicating the number of people inside the “Panorama” tower and the relative 

importance of the remaining persons per building in the study area 

 

High

Low
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4. AN ILLUSTRATIVE CASE STUDY 

 

Here, we present a first study to check whether the model correctly simulates the problem 

under study. This study also enables an examination of the potential impact of social influence 

and the ways to combine several triggers. For this case study, the three following scenarios are 

set. The information in the brackets corresponds to the height of the water at Austerlitz station 

or the time of occurrence, the maximum fraction of residents which could decide to evacuate 

under its effects and the impacted buildings.  

• Scenario 1 consists of the occurrence of the following three potential evacuation triggers: 

(1) the closure of the traffic lanes along the Seine river due to flooding (6.4 m, 25%, all 

the buildings), (2) the issuance of a recommended evacuation order (6.6 m, 35%, all the 

buildings) and (3) the disruption of the urban heating (7 m, 70%, only the 3 social 

housing towers). This scenario can be considered as a control scenario because its three 

events are also part of the other two scenarios. 

• Scenario 2 consists of the occurrence of the following four potential evacuation triggers: 

(1) the closure of the traffic lanes along the Seine river due to flooding (6.4 m, 25%, all 

the buildings), (2) the issuance of a recommended evacuation order (6.6 m, 35%, all the 

buildings), (3) recommended evacuation of underground car parks (6.8 m, 70%, the 11 

co-ownership towers) and (4) the disruption of the urban heating (7 m, 70%, only the 3 

social housing towers). 

• Scenario 3 consists of the occurrence of the following four potential evacuation triggers: 

(1) the closure of the traffic lanes along the Seine river due to flooding (6.4 m, 25%, all 

the buildings), (2) the issuance of a recommended evacuation order (6.6 m, 35%, all the 

buildings), (3) the disruption of the urban heating (7 m, 70%, only the 3 social housing 

towers) and (4) a power outage (480 hours, 90%, all the buildings). 

All the simulations started with an initial population of 3,109 households (with a total of 

9,480 persons, 3,576 of whom are in the social housing towers) at random apartments. These 

data are used for all the simulations run in this case study. With the by default timeslot of 6 

hours, each simulation consists of 250 calculation steps. The results obtained from single 

simulations of the scenarios with the three combination approaches are presented in Table 3. It 

could be concluded that the theoretical structure of the model seems to be of a certain level of 

realism; the results show that the number of remaining people diminishes since the number of 

triggers increases. 

The knowledge of the evacuation demand, as well as its spatial and temporal variability is a 

critical piece of information for adequate management planning. The temporal distributions of 

the number of remaining persons obtained from the three scenarios are illustrated in Figure 6. 

It can be observed in this figure that, due to modelling uncertainties, there are differences 

between the evacuation demands in the earlier hours after the beginning of the simulations, 

although at that moment, the three scenarios are “supposed” to be identical (as the 

differentiating triggers of scenarios 2 and 3 do not occur). 
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Table 3. Evacuation results of the scenarios under consideration 

 Combination approach 

 Maximum Addition Product 

Scenario 1 4,364 pers. (1,715 hs.*) 4,364 pers. (1,704 hs.) 4,319 pers. (1,699 hs.) 

Scenario 2 2,731 pers. (1,060 hs.) 2,256 pers. (855 hs.) 2,323 pers. (882 hs.) 

Scenario 3 1,555 pers. (612 hs.) 1,510 pers. (578 hs.) 1,446 pers. (573 hs.) 

* pers. means persons and hs. means households 

 

The maps below (Figure 7a and 7b) reveal that the relative importance of the evacuation 

demand within the study area could change quickly. On the basis of these maps resulting from 

the unique simulation of scenario 3, while there are only few towers with a high level of relative 

evacuation demand 276 hours after the beginning of the simulation, the situation has changed 

48 hours later so that there are more towers that will need great focus in the case where the 

public authorities will decide to evacuate people at that moment (324 hours after the beginning) 

instead of two days earlier. This just means that there is the same number of remaining persons 

inside these towers. Indeed, at 276 and 324 hours, the numbers of remaining persons in the 

high-rise buildings range from 290 to 727 and 183 to 568, respectively, while the tower with 

the most residents (12.33 % of the total evacuation demand) previously housed only 455 

persons (8.4 %). To avoid the variability due to uncertainties and to implement evacuation 

activities on the basis of reliable results, one could also draw the maps relying on the results 

from Monte Carlo simulations. 

To further analyse the potential effects of social influence and the combination approach, a 

sensitivity analysis was conducted to obtain a general understanding about how the households’ 

evacuation decisions change with different conditions. For this purpose, a stochastic simulation 

was performed to obtain the average outputs for the parameters of interest. A total of 300 

simulation trials with random initial spatial distributions of households was run for each 

scrutinised issue. The relatively high values of the obtained standard deviations (Tables 4 and 

5) reveal that the simulation results may vary greatly from one to another because of 

uncertainties, which justifies the need for systematic Monte Carlo simulations running when 

using this model. Table 4 summarises the results of scenario 1 run with the application of the 

three combination approaches. 

The histogram of the obtained results for the additive combination option is shown in Figure 

8. It could be observed that these results (and the other ones from the Monte Carlo Simulations) 

are nearly normally distributed (a higher number of simulation trials could allow the shape of 

the distribution to be refined). A statistical analysis was thus conducted to construct normal 

probability density functions from the data obtained through Monte Carlo simulations (Figures 

9 and 10). The observed variations among these results are too small to be significant (Figure 

9); it could not be concluded that there is a difference between the three combination options. 
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This situation may be due to the small number of the evacuation triggers probably leading to 

very little overlapping of their effect durations. 

Table 5 summarises the results of scenario 1 run with and without social influence using the 

“maximum option” for the combination of triggers. The comparison of the results of the 

simulations performed ignoring the interactions among the households with those of 

simulations accounting for them shows that the number of remaining people when the 

households do not interact is higher than in the two other cases (Figure 10). This finding 

confirms the hypothesis that social influence will increase the likelihood that households will 

decide to self-evacuate their apartments when they encounter a major flooding of the Seine. 

Varying the settings for the fraction of non-occupied apartments provides more insights in the 

importance of the social influence degree, i.e., the higher the social relationships with their 

neighbours (meant by a lower fraction of non-occupied apartments at the storey or at the whole 

building level), the more likely the households are to decide to evacuate. 

Furthermore, when focusing on scenario 1 and adopting the “maximum option” as the 

combination approach, the number of remaining people could not be lower than approximately 

3,400 persons with regard to the maximum fraction of residents that could decide to evacuate 

under the effects of each triggering event and without accounting for social influence. Indeed, 

the results in Table 3 show that 4,364 people who will not evacuate when running a simulation 

of the scenario 1 and adopting the “maximum option” as the combination approach. Besides, 

the obtained result in Table 5 (mean= 4,402 persons and standard deviation 68) also 

demonstrates that the algorithm of this predictive evacuation model shows good performance. 

Even the results from the simulations accounting for social influence are higher than 3,400 

persons. The reliability of the output is thus verified. From a technical point of view, this is a 

valuable step toward the validation of the model since a different result would mean that the 

algorithm is wrong. 

 

 

Figure 6. Comparison of the temporal evolution of persons remaining in the towers (“maximum option” 

results) 
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(a)         (b) 

 

Figure 7. Spatio-temporal distributions of evacuation demands of scenario 3 (a) 276 hours and (b) 324 

hours after the beginning of the flooding (unique simulation results) 

 

 

Table 4. Sensitivity analysis of the effects of the combination approach on the number of remaining 

persons 

 
Maximum Addition Production 

Mean  4,376 4,360 4,367 

Standard deviation 60 63 62 

 

 

 

Figure 8. Histogram for the additive combination approach (300 simulation trials) 

 

High
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Figure 9. Statistical distributions of the remaining persons calculated with regard to the 

combination approach 

 

 

Table 5.  Sensitivity analysis of the effects of social influence on the number of remaining persons 

 

No social influence 

Social influence when 

non occupied 

apartments > 50 % 

Social influence when 

non occupied 

apartments > 75 % 

Mean  4,402 4,320 4,376 

Standard deviation 68 73 60 

 

 

 

Figure 10. Statistical distributions of the remaining persons calculated with regard to social influence  
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5. CONCLUSIONS 

 

The probabilistic agent-based model presented in this paper is intended to support the 

estimation of the evacuation demand in the towers of the 15th district in Paris. By achieving 

the objective of accounting for social influence, multiple triggering events and uncertainties, 

this model could lead to a better realism in the results when predicting the number of people to 

care for if evacuation of the Parisian 15th district is needed. Indeed, by accounting for 

evacuation decision-making factors that are not or are less commonly considered by the 

existing evacuation models, this study contributes to the improvement of the 

comprehensiveness of the evacuation determinants by the evacuation modelling engineering. 

Additionally, as the comprehensiveness of the decision-making factors integrated in the 

evacuation model increases, so does the reliability of its outputs. 

Though the evacuation decision is difficult to predict due to the difficulty of determining the 

complex evacuees’ behaviours, the illustrative case study has led to insights about this first step 

towards a tool for simulating households’ decisions to evacuate. Globally, the model seems to 

correctly simulate the households’ evacuation decision-making processes through the decrease 

in the number of people in the buildings over time as soon as triggers occur. The testing 

simulations demonstrate that the current version of the model can be run without identified 

bugs and can already be used for running a series of scenarios that could result from a major 

flood of the Seine river. The current version of the model can also be used for any other study 

area. In that case, instead of relying on the interaction rules between households located on the 

same storey or living in the same building, one will consider a given area around the households’ 

dwellings. 

However, one must define the proper response curves for each evacuation trigger to generate 

more realistic results. For this purpose and within the ambit of this study, a survey was 

conducted after the 2016 and 2018 floods to construct a response curve associated with power 

outages in the Paris urban area. This response curve is currently being integrated into the model, 

which is still under development. An important step remains to be performed after defining 

response curves. This step will consist of validating the model. Indeed, the realism of the results 

generated by the model can be questioned because the model has not yet been validated. As 

stated by Pel (2011), the validation of evacuation model outcomes is, in most cases, difficult 

or even impossible because real data for evacuations are limited or unavailable. However, if 

the data needed for the calibration and the validation are available, the model can be adjusted 

to simulate the households’ decisions to evacuate or not with a higher level of realism. 

Moreover, we acknowledge another limitation of the model, which is the time-consuming 

computations. First, the running times vary according to the defined timeslot because the higher 

the number of calculation steps, the greater the number of iterative calculations needed for a 

simulation. Second, the model considers only triggers liable to induce households to evacuate 

at the expense of those that can encourage them to stay at their apartments, such as the risk 

management activities to reduce the risk level (the long lasting duration of the flooding makes 

it possible to intervene for reducing the risk or its damage).  
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Despite its obvious drawbacks at this stage, the model offers a constructive basis for 

researchers and policymakers to better investigate the evacuation demands while taking into 

account different households characteristics and the combination of the effects of various 

evacuation triggers under social influence conditions. The model is a unique and valuable tool 

to predict the number of households who will not decide to evacuate to help risk managers 

estimate the evacuation needs, such as the identification of where to take the remaining 

residents, the planning of safe traffic lanes and the definition of the appropriate instructions to 

guide people to safer places. The model also permits the raising of the important question 

regarding the need to construct response curves for evacuation triggers different from the 

evacuation orders/instructions and hazard-related features, which to the best of our knowledge, 

has not yet been raised in the existing literature on evacuation modelling. Future studies could 

further investigate this question. 
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