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Abstract Environmental hazards have always been a source of serious concern as they are 
becoming more severe and wider in scope, enhancing the risk of additional losses to the 
environment and public health. The comprehensive risk assessment has emerged as a core 
component of disaster mitigation strategy. After the international convention on sustainable 
development in 1992, the multi-hazard approach is widely used as part of Disaster Risk 
Reduction (DRR) strategy. Lying in the vicinity of the North-West Himalayan region, Jammu 
Division is prone to multiple hazards which have led to numerous causalities. In this study, 
landslides, floods, earthquakes, droughts, forest fires and soil erosion are considered for 
prioritizing risk from multi-hazard. Analytical Hierarchy Process have been adopted for data 
processing for the standardisation and normalisation of the weights. The area prone to 
multiple hazards is delineated after overlaying all the individual assessment of hazard events 
using weights computed by an objective approach. The multi-hazard susceptibility map is 
categorised into five zones: very low, low, moderate, high and very high. The findings 
revealed that 43.43 % of area lying in south eastern, central and eastern part is suffering from 
multiple hazards are prioritized for preventing communities to suffer from the multiple 
hazards. This area lies in central part of the study area in proximity to faults and weak 
lithology. The identified area under multi-hazard should be well studied for potential 
cascading of hazards. The targeted interventions and proactive measures should be adopted 
for enhancing the resilience and disaster risk reduction. The prioritized zones will be 
extremely valuable for risk profiling, vulnerability assessment and formulation or revision of 
DRR strategy action plans. 

Keywords: Multi-hazards, Susceptibility assessment, Analytical Hierarchy Process, Disaster 
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1. INTRODUCTION 
 

Environmental hazards pose a serious threat to public health and assets (Javidan et al., 
2021; Morales & de Vries, 2021). The damage from hazards has been increasing 
considerably (Pouyan et al., 2021) as the recent United Nation Disaster Risk Report 
(UNDRR), 2022 supported that continual addition has been reported in disaster events per 
year, moreover, it is projected that the number of events could reach 560 by 2030 as opposed 
to 400 in 2015 (UNDRR, 2022). Since the risk of single hazard has been on rise, the impact is 
never single fold rather it is multi-fold. The impact of any hazard is increased and worsened 
by the interaction of another hazard as the occurrence of one hazard is more often followed 
by another (Liu et al., 2016; Eshrati et al., 2015). Previous studies indicate that researchers 
have predominantly focused on studying single hazards as evidenced by the works of Javidan 
et al., 2021; Pouyan et al.,2021; Kappes et al., 2012. For instance, hazards like landslides 
(Althuwaynee et al., 2014; Pellicani et al., 2017: Dasanayaka & Matsuda, 2022), floods 
(Kazakis et al., 2015; Kabenge et al., 2017; Aydin & Birincioglu, 2022), earthquakes 
(Theilen-Willige 2010; Dhar et al., 2017), drought (Lehner et al., 2006; Palachaudhari & 
Biswas, 2016), soil erosion (Aslam et al., 2021), tropical cyclones (Hoque et al., 2018), and 
forest fires (Adab et al., 2013; Gheshlaghi et al., 2020) are among the few examples that have 
been studied as individual hazards.  

In recent times, there has been a discernible shift in attention from individual hazard 
evaluation to multi-hazard studies, driven by the recognition that hazards occur differently 
across locations and can interact with one another (Tilloy et al., 2019). The term multi-hazard 
got recognition in Agenda 21, when the multi-hazard approach was adopted for Disaster risk 
reduction followed by the Johannesberg plan and Hyogo framework of action 2005-2015 
(Eshrati et al., 2015; Kappes et al., 2012). The concept of multi-hazards can be well 
understood by these definitions- “totality of all the relevant hazards at place” (Kappes et al., 
2011), “all-hazards-at-place” (Hewit & Burton, 1971) or “multiple hazards that country faces” 
(UNDRR, 2009). In the words of Kappes et al., 2012, all multi-hazard studies generally 
involve more than one hazard approach. Being location-specific (Morales & de Vries, 2021), 
a hazard may occur only at certain places or multiple hazards can exist in any geophysical 
environment (Angeli et al., 2022; Kappes et al., 2012).  

Geographical Information Systems (GIS) and remote sensing have been effective and 
useful in the field of hazard vulnerability and risk studies (Berry, 2009; van Westen, 2011). 
By employing visual aids and thorough examination, hazard mapping empowers stakeholders 
to recognize potential dangers, evaluate susceptibilities, and devise proactive strategies to 
reduce negative consequences (Pimentel et al., 2020). As a proactive response and mitigation 
strategy, multi-hazard mapping has proven to be the most beneficial and effective (van 
Western & Grieving, 2017). Multi-hazard mapping has become popular and sophisticated as 
there is no single approach developed to assess multi-hazards risk (Pourghasemi & Kerle, 
2016, Aksha et al., 2020). Several methodologies (Morales & de Vries, 2021) have been 
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developed such as Multi-criteria decision Methods-Analytical hierarchy process 
(AHP)/Fuzzy AHP (Morales  & de Vries, 2021; Aksha et al., 2021;), Analytical Network 
Process, Machine learning Methods- Support Vector Machine (SVM), General Linear Model 
(GLM), Boosted Regression Tree (BRT) (Rahmati et al., 2019; Pouyan et al., 2021), 
Convolution Neural Network (CNN) (Ullah et al., 2022), Random Forest (RF) (Pouyan et al., 
2021), MaxEnt (Javidan et al., 2021) have been deployed to map the multi-hazard.  In this 
present study, the Multi-criteria AHP method which is developed by Saaty in1980 (Saaty, 
2008) is employed in a GIS environment to prepare maps. The AHP method has gained 
widespread popularity, especially in hazard assessment (Morales & de Vires, 2021) and it is 
frequently applied in integration with GIS and remote sensing (Psomas et al., 2018). Its 
significance lies in the fact that it entails expert participation to remove the pure subjectivity 
involved in decision-making and weighing criteria (Zizovic et al., 2020). 

 

2. STATEMENT OF THE PROBLEM 
 

The Himalayan belt and adjoining portion of the alluvial plain are notoriously unstable and 
vulnerable to multiple hazards (Patel et al., 2020). Despite the area’s proneness to disaster 
due to topography and relief, stress related to hazards is surging continuously because of the 
increasing populace and paced construction work (Patel et al., 2020; Yousuf et al., 2017). 
Earthquakes, floods, landslides, avalanches, flash floods, cloud bursts etc. happen frequently 
according to earlier studies (Chandra et al., 2018; Kumar and Acharya, 2016; Thayyen et al., 
2013). Ali et al. (2022) while preparing profile of hazard of the Kashmir Himalaya (part of 
NW Himalaya) summarize 1693 earthquakes, 39 floods, 65 landslides, and 57 snow 
avalanches events signify the severity and adversity of natural hazards in the region. Another 
factor that has contributed to the disasterisation of hazards is political unrest (Shah et al., 
2018). Hence, it becomes imperative for us to assess multi-hazard as the need of the hour. 

 

3. STUDY AREA 
 

The study area encompasses the North-Western Himalayan and adjoining Punjab plains. 
The present study attempts to cover only the Jammu division of Union Territory of Jammu 
and Kashmir (UT J&K) (Figue1). Jammu division is comprising ten districts: Jammu, Punch, 
Reasi, Rajouri, Udhampur, Samba, Kathua, Doda, Ramban, and Kishtwar. It stretches 
between 32o17´ to 34o12´N latitude and 73o58´ to 76o47´E longitude (Sharma, 2019). It is 
surrounded by Kashmir valley in the north, UT of Ladakh in the west, and Punjab and 
Himachal Pradesh in the south. Jammu province varies in altitude from 300 metres above 
mean seal level (AMSL) to above 6000 AMSL. Topographically, the Jammu province is 
divided into three divisions: Alluvial plains (south), Outer Himalayas, and Middle Himalayas 
(Sharma, 2019). The great diversity is found in the temperature and precipitation distribution 
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of the Jammu division. In summer, the temperature goes as high as 45oC in the southern 
alluvial plains whereas it doesn’t exceed more than 32oC in the mountainous part of the 
region. However, as low as -10oC is observed in Middle Himalayas during winters. Annual 
rainfall varies between 60cm to 150cm (IMD, 2014). The region is predisposed to multiple 
hazards (Patel et al., 2020) and has faced massive hazards like the 2005 earthquake, and 2014 
flood, landslide and avalanches are seasonal phenomena (SDMP, 2017) (Table 1). Hassan 
(2014) also mentioned the occurrence of occasional droughts in the region. 

Figure 1.  Location map of the study area 
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Table 1.  Major disaster events and losses in the study area 

S.no. Major events Causalities held 

1. Jammu and Kashmir Earthquake, 2005 7.6 richter scale, 23782 houses were damaged and 953 death 

2. Doda Cloud Burst and flash floods, 2011 17 stsructre washed away, many lives drown into flash floods 

3. Jammu and Kashmir Floods, 2014 over 300 lives, 2 million affected and 2.53 lakh house damaged, 

a vilage sadal alone experienced 40 deaths 

4. Thatri, Doda, Cloud burst and flash floods, 

2017 

8 people killed, 11 injured, resultant flashflood inundated 

Doda-Banihal-Kishtwar highway 

Source: State Disaster Development Plan, 2017; Patel et al., 2020 

 

4. RESEARCH OBJECTIVE 

The present work aimed to create a multi-hazards map by aggregating the six hazards- 
earthquake, floods, landslide, forest fires, soil erosion and droughts. The novelty of the 
present study is that it has involved six hazards at once and their weight are computed using 
objective approach considering frequency and total damages caused by hazard. 

 

5. MATERIAL AND METHODS 

5.1 Database and Source 

According to previous existing literature, usually, fifteen to twenty-one factors (Khatakho 
et al., 2021; Ullah et al., 2022; Sanam et al., 2022) have been considered to map multi-
hazards whereas, in the present study, twenty factors have been selected for hazard 
assessment. For each hazard, selected factors are discussed in Table 2 and Figure 2a-2t. The 
format and sources of data are discussed in Table 3 and their brief description is given below 
one by one. 

Table 2.  Selected causative factors for each hazard for preparing the multi-hazard map 

Layers Earthquakes Flood Landslide Forest 
Fire 

Drought Soil 
Erosion 

Distance From Fault ×   ×       
Flow Accumulation × ×         
Slope × × × × × × 
Elevation × × × ×   × 
Drainage Density   ×       × 
Land Use   × × × × × 
Geology × × ×     × 
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Annual Precipitation   × × ×  × × 
Distance To Stream   ×         
TWI   ×         
Curvature   ×       × 
Aspect     × ×     
Soil   × ×   × 

 

NDVI     × 
 

× × 
Temperature       × ×   
Wind Speed       ×     
Evapotranspiration         ×   
Maximum 
Temperature 

        ×   

Lineament Density     ×     × 
Relative Humidity         ×   
Note: × represent the selected factor   

Table 3.  Description of causative factors showing their sources and format 

Factors Source Format Resolution  

Distance From Fault Bhukosh, Geological Survey Of India Polylines - 

Flow Accumulation Extracted From CARTODEM* Raster 30m 

Slope Extracted From CARTODEM Raster 30m 

Elevation CARTODEM Downloaded From BHUVAN^ Raster 30m 

Drainage Density Extracted From CARTODEM Raster 30m 

Land Use Sentinel-2 Imagery, 2021 Raster 10*10m resolution 

Geology USGS Geology Atlas Polygon - 

Annual rainfall Climate Research Unit (CRU) Database NetCDF  (o5x o5 grid) 

Distance To Stream Extracted From CARTODEM* Raster 30m 

TWI Extracted From CARTODEM Raster 30m 

Curvature Extracted From CARTODEM Raster 30m 

Aspect Extracted From CARTODEM Raster 30m 

Soil Food And Agricultural Organisation, FAO Polygon  - 

NDVI Oceansat 2, Download From BHUVAN Raster 30m 

Temperature POWER NASA* Database Point And Attribute - 

Wind Speed Global Wind Atlas Raster 30m 

Evapotranspiration MODIS*, USGS Earth Explorer Raster 30m 

Maximum Temperature POWER NASA Database Point And Attribute - 

Lineament Density Bhukosh, Geological Survey Of India Polylines - 

Relative Humidity POWER NASA Database Point And Attribute - 

 

5.2 Description of Causative Factors 

Geology and Distance to Faults: The role of geology is immense in governing the 
earthquake, landslide, flood and soil erosion hazards (Pourghasemi & Kerle, 2016; Nsangou 
et al., 2021). The geology of the study area is downloaded from USGS World Geologic maps 
(Figure 2s) and fault line in the form of Polylines is downloaded from Bhukosh, the official 
web portal of the Geological Survey of India. Distance to Fault has been prepared from the 
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multiple ring buffer tool of Aeronautical Reconnaissance Coverage Geographic Information 
System (ArcGIS) Software version 10.5 with a distance of 10 km intervals (Figure 2d). 

Lineament Density: Lineament density is extracted from Lineament which is downloaded 
from the Bhukosh, web portal of the Geological Survey of India and it is prepared in ArcGIS 
using the Euclidean distance tool (Figure 2e). It controlled curvilinear features according to 
Sonker et al., 2021 and hence represent fracture and fault zones. In the study area, the Main 
central thrust and the Himalayan central thrust are both found that make the area susceptible 
to landslides, floods, and soil erosion. 

Drainage Density: It substantially impacts floods (Paul et al., 2019) and there exists the 
direct relationship between flood and drainage density (Ullah & Zhang, 2020). Drainage 
density is determined from the DEM and mapped using the line density technique of the 
spatial analysis tool in ArcGIS (Figure 2g). 

Figure 2a-2i.  Mean annual temperature, Mean relative humidity, Mean monthly maximum 
temperature, Distance to fault, Lineament density, TWI, Drainage density, Slope and Distance to 
stream 

Slope: It is of paramount importance in influencing almost all the hazards whose thematic 
layer was prepared from DEM using the slope of 3D analysis tool in ArcGIS Software 
version 10.5 (Figure 2h). Steeper slopes are known to be more susceptible to erosion, 
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landslide and earthquake whereas floods tend to occur in those areas where gentle slopes are 
found (Rincoin et al., 2017; Saini et al., 2015; Dou et al., 2020; Kaur et al., 2019). 

Mean Annual Temperature: The study used the Prediction of Worldwide Energy 
Resource (POWER) project of the National Aeronautics and Space Administration (NASA) 
for extracting annual temperature data which is collected in the form of attributes of a 
particular location. The IDW interpolation technique is used to obtain the final map (Figure 
2a). The temperature plays a decisive role in determining the vulnerability of forest fire and 
drought susceptibility (Lamat et al., 2021; Palachuadhuri & Biswas, 2016). 

Mean Relative Humidity: Relative humidity is one of the important climatic factors that 
play a crucial role in determining drought susceptibility (Palachaudhari & Biswas, 2016). It is 
downloaded in attribute form from the POWER project database of NASA for forty years and 
its map is prepared using the IDW technique in ArcGIS (Figure 2b). 

Figure 2j-2r.  NDVI, Soil, Mean annual rainfall, Aspect, Flow accumulation, Mean annual 
evapotranspiration, Curvature, Wind speed, and Elevation 

Mean maximum Temperature: Another significant factor contributing to drought 
susceptibility is mean maximum temperature (Palachaudhari & Biswas, 2016) which is also 
extracted from the POWER project database of NASA in attribute form. IDW technique is 
applied to create the layer (Figure 2c). 
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Topographic Wetness Index (TWI): The TWI is a measure of the influence of local 
topography on surface hydrology which reflects the possibility of water infiltration capacity 
(Arulbalaji et al., 2019, Khosravi et al., 2016). In the current study, TWI is determined from 
DEM and is mapped (Figure 2f) using the following formula as: 

TWI= In(α/tanβ) 

whereas α represents the accumulation of flow and tanβ represents associated slope. 

Normalised Difference Vegetation Index (NDVI): The NDVI is utilised to examine the 
vegetative cover and its influence on slope stability, runoff and infiltration (Khatakho et al., 
2021; Fang et al., 2021). It is inversely proportional to landslide susceptibility (Khatakho et 
al., 2021). NDVI developed by utilising Oceansat-2 downloaded from Bhuvan, web portal of 
NRSC, Government of India (Figure 2j). Its value ranges between -1 to 1. 

Soils: The texture of the soil is an important factor that influences infiltration and runoff 
leading to many hazards. The data regarding the soil is downloaded from Food and 
Agricultural Organisation (FAO) in polygon forms whose map is prepared in ArcGIS (Figure 
2k).  

Distance to Stream: Distance to stream is another crucial factor in governing floods 
(Khosravi et al., 2016). The proximity of an area to streams makes them vulnerable during 
the season of heavy rainfall (Das, 2019). It is extracted from DEM and mapped using the 
Euclidean distance tool in ArcGIS (Figure 2i). 

Annual Rainfall: It is one of the triggering factors of landslides, floods soil erosion and its 
deficiency leads to drought (Bennet et al., 2018; Long et al., 2018). The data on precipitation 
is collected for 40 years on average from 1981-2021 in gridded form from the Climate 
Research Unit gridded Time Series (CRUTS) database downloaded from 
https://crudata.uea.ac.uk/cru/data/hrg/ (data viability is shown in Harris et al., 2020). After 
converting the gridded data into point form, the Rainfall map is prepared using Inverse 
Distance Weighted (IDW) interpolation technique in ArcGIS (Figure 2l). 

Aspect: Aspect is one of the topographic factors that is derived from DEM using the 
aspect of the 3D analysis tool in ArcGIS (Figure 2m).  Khatakho et al., 2021 mentioned 
aspect as an aggravating factor for landslides which influence the hydrological process, 
meteorological, and morphological structure of an area (Ullah & Zhang, 2021, Yalcin, 2008). 

Curvature: It aids in concentrating the water on the concave side (Khatakho et al., 2021). 
In this study, the curvature (Figure 2p) is derived from the DEM in ArcGIS which shows the 
topographic shape of the area (Das, 2019). 

Flow Accumulation: It is considered one of the important causative factors for 
earthquakes and floods (Aksha et al., 2020). It is extracted and prepared from DEM using the 
hydrology tool in ArcGIS (Figure 2n).   
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Wind Speed: It is another factor contributing to the intensity of forest fire mainly in the 
present study (Adab et al., 2013; Schoennagel, 2004) whose data is downloaded from Global 
Wind Atlas in Raster form (Figure 2q). The wind speed at the 10m exposure map is extracted 
from the downloaded raster. 

Figure 2s-2t.  Geology (USGS), Land use & Land cover (drawn from Senitel-2) 

Elevation: Elevation is a crucial factor in hazard monitoring, especially for earthquakes, 
floods, landslides, forest fires and soil erosion (Khatakho et al., 2021; Aydin et al., 2022; 
Nsangou et al., 2022; Intarawichian et al., 2010; Lamat et al., 2021; Aksha et al., 2020). The 
elevation is prepared from the extraction of the Digital Elevation Model (DEM) of Cartosat-
1(in short CARTODEM whose resolution is 30 m) downloaded from BHUVAN, a web portal 
of the National Remote Sensing Center (NRSC), Government of India (Figure 2r). The risk of 
soil erosion and landslide is not pronounced much at lower elevations whereas floods have 
more susceptibility at lower elevations (Gigovic et al., 2017). Often, forest fires have also 
been found to be decreasing with declining elevation (Rothermal et al., 1983; Lamat et al., 
2021). 

Evapotranspiration: Higher evapotranspiration increases drought susceptibility 
(Palachaudhari & Biswas, 2016). The data regarding evapotranspiration is derived from 
Moderate Resolution Imaging Spectroradiometer (MODIS) downloaded from United States 
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Geological Survey (USGS) Earth Explorer which is in gridded form for the last 10 years. 
Using cell statistics, mean evapotranspiration is calculated as shown in (Figure 2o). 

Land Use & Land Cover: Land use & Land cover has a considerable impact on 
geological stability and hydrological functions which in response significantly influences all 
the hazards (Khatakho et al., 2021; Aksha et al., 2020; Azarafza et al., 2021; Kumar et al., 
2018; Swain et al., 2020). This study prepared the land use land cover from Sentinel -2 image 
whose resolution is 10 m downloaded from USGS Earth Explorer (Figure 2t). The supervised 
classification technique using a maximum likelihood classifier is applied for preparing land 
use land cover in which classes are identified using Environmental System Research Institute 
(ESRI) classification. 

 

5.3 Research Methodology 

The present study has been performed  by following  three steps: 

5.3.1 Preparation of Thematic Layers of Causative Factors 

As discussed in the above section, all the causative factors have been processed in ArcGIS 
(it is discussed in 5.2 section) and their thematic layers have been prepared. 

5.3.2 Finalisation of Criteria and Assignment of Weight Using AHP 

The present study uses AHP for the evaluation of relative weight of conditioning factors 
and preparation of a pairwise comparison matrix for finalising weights of each layer for 
different hazards (Khezri et al., 2017; Aksha et al., 2018; Seejata et al., 2018; El Jazouli et al., 
2017; Rasooli et al., 2018). The flow chart of methodology is shown in Figure 3. The existing 
literature showed that AHP in integration with GIS has proven an effective approach to 
monitoring disasters, especially, hazard mapping (Morales & de Vries, 2021). AHP is a 
decision-making technique developed by Saaty in the 1980s which breaks the problem into 
hierarchy structure and incorporated expert participation explicitly (Saaty, 2008). In this 
method, the objective is kept at the top, and criteria and sub-criteria followed by alternatives 
are placed in descending order. Further, a pairwise comparison table is prepared based on the 
importance scale (as given by Saaty, Table 4) and consistency index (1) and the consistency 
ratio (2) is computed to check the accuracy of the applied method (Saaty, 2008): 

Consistency index, (CI) = 
ƛ௠௔௫ିଵ

௡ିଵ
                                                      (1) 

Consistency ratio, (CR)= CI/RI                                                                                       (2) 

whereas RI is the random index (shown in Table 5). 
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Table 4.  Saaty’s relative importance scale (Saaty, 2008) 

S. no. Explanation Intensity of relative Importance 

1 If criteria A and B are equally important 1 

2 If criteria A is moderately important than B 3 

3 If criteria A is strongly important than B 5 

4 If criteria A is very strongly important than B 7 

5 If criteria A is extremely important than B 9 

6 for intermediate judgements 2,4,6,8 

Figure 3.  Flowchart of methodology followed for the present study 
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Table 5.  Random Index provided by Saaty 

N 1 2 3 4 5 6 7 8 9 10 11 12 

RI 0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49 1.52 1.54 

 

The permissible limit of CR is considered to be below 0.10 whereas some researchers 
accept the criteria to be 0.15 (Morales & de Vries, 2021). Moreover, when weights are 
evaluated, classes are also ranked on an importance scale of 1 to 9 according to the 
relationship between hazard and conditioning factors. 

5.3.3 Overlay analysis and mapping of hazard 

After the finalisation of criteria and weight, a single hazard map has been prepared after 
integrating the conditioning factors using the Weighted overlay tool in the ArcGIS software 
whose equation (3) is as follows: 

Hi= ∑ ∑ (𝑊𝑖 ∗ 𝑋𝑗)௡
௝ୀଵ

௡
௜ୀଵ                                                                                                     (3) 

whereas Hi is the single hazard map, Wi is the normalised weight of the ith factor and Xj is 
the normalised weight of the jth parameter. The computed values have been classified into 
five classes: very low, low, medium, high, and very high. At last, all the single hazards have 
been integrated into a multi-hazard map using weight (4): 

MH= ∑ 𝑤𝑖 ∗ 𝐻𝑖௡
௜ୀଵ                                                                                                                (4) 

whereas MH= multi-hazard and  wi = weight decided based on frequency, total affected lives, 
total  deaths and total socioeconomic damage. 

Every single hazard map is validated using historical events, and existing data available on 
government websites. 

 

6. RESULTS AND DISCUSSION 

6.1 Flood Hazard Assessment 

To assess flood susceptibility, eleven factors have been selected and their pairwise 
comparison matrix is shown in Table 6. Amongst all the factors, the most influencing factors 
to flood hazards are found to be rainfall, distance to stream, slope, drainage density and flow 
accumulation as their respected normalised weights are 21%, 25%, 11%, 12% and 9% 
respectively. The method is consistent as the consistency ratio is found to be 0.10. the flood 
susceptibility map (shown in Figure 4a) is categorised into five classes: very low, low, 
moderate, high and very high. It is observed that 47.91 % of the area is under the moderate 
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zone followed by high (26.91%) and low susceptibility zone (12.88%). Southern and 
southwestern parts of the area are found to have a high probability of flood occurrence which 
may be attributable to low elevation and high rainfall in conjunction with high drainage 
density and proximity to distance to stream. Areas with low elevation and high drainage 
density have a predisposition to low infiltration and high runoff which leads to flooding 
(Kaledje et al., 2019; Shekhar & Pandey, 2015). Areas in the northern and northeastern parts 
of the area of interest are observed to have a higher probability only where there is high flow 
accumulation and less distance to the stream. Topographically, the northern and northeastern 
side of the region constitutes parts of hilly areas (above 3000m as shown in Figure 2q) that 
receive rainfall during the summer season but the presence of steep to precipitous slope has 
caused accumulation in river valleys. Thus, these parts are prone to floods near river valleys 
(Aksha et al., 2020). In the central part of the study area, vegetative slopes restrict the speed 
and amount of runoff, thus are moderately susceptible to floods (Yalcin & Akyurek, 2004). 
Ullah and Zhang (2020) also reported the flood occurrence near the river valley and in the 
areas where flat curvature, high drainage density and high TWI is found. Similar results have 
been observed in the study. 

Table 6.  Pairwise comparison table of causative factors of floods 

 FL SL EL DD LULC G RF DTS TWI C S NW 

FL 1.00 0.33 7.00 1.00 5.00 3.00 0.14 0.20 3.00 3.00 5.00 0.09 
SL 3.00 1.00 4.00 0.33 3.00 5.00 0.33 0.20 5.00 7.00 3.00 0.11 
EL 0.14 0.25 1.00 0.33 3.00 0.33 0.17 0.14 0.20 2.00 3.00 0.03 
DD 1.00 3.00 3.00 1.00 7.00 5.00 0.20 0.33 5.00 2.00 5.00 0.12 

LULC 0.20 0.33 0.33 0.14 1.00 0.20 0.14 0.17 0.20 0.33 3.00 0.02 
G 0.33 0.20 3.00 0.20 5.00 1.00 0.33 0.14 3.00 3.00 4.00 0.06 

RF 7.00 3.00 6.00 5.00 7.00 3.00 1.00 0.50 6.00 6.00 5.00 0.21 
DTS 5.00 5.00 7.00 3.00 6.00 7.00 2.00 1.00 5.00 5.00 7.00 0.25 
TWI 0.33 0.20 5.00 0.20 5.00 0.33 0.17 0.20 1.00 3.00 0.33 0.05 

C 0.33 0.14 0.50 0.50 3.00 0.33 0.17 0.20 0.33 1.00 2.00 0.03 
S 0.20 0.33 0.33 0.20 0.33 0.25 0.20 0.14 3.00 0.50 1.00 0.03 

Whereas, FL= Flow accumulation, SL=slope, EL=elevation, DD=drainage density, G=geology, LULC=land use 
land cover, RF=mean annual rainfall, DTS= distance to stream, TWI=topographic wetness index, C= Curvature, 
S=soil, NW= normalised weights 

 

6.2 Earthquake Hazard Assessment  

To perform earthquake hazard assessment in a GIS environment, we selected five factors 
as mentioned in Aksha et al., 2020 whose relative weights are shown in Table 7. This method 
is reliable as its consistency ratio is found to be 0.09 which is less than the threshold value. 
The most dominating factors are geology (24%) and distance from fault (56%). Flow 
accumulation has also been observed to influence seismic hazards as it enhances the chances 
of liquefaction by bringing unconsolidated sediments (Theilen-Willige, 2010). Five classes 
have been identified: very low, low, moderate, high and very high in the earthquake hazard 
map (Figure 4b). About 38.35% of the region falls under the very high susceptible zone 
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whereas a moderate susceptibility zone accounts for 33.51% followed by the high zone 
(23.19%). It comes to notice that the southern part of the area, which topographically lies 
below 300m elevation and forms part of plains have found to be under low and moderate 
susceptibility. Except for the southern part, the whole of the area is noticed to be under very 
high and high susceptibility. It is due to proximity to faults as two Faults-Main central thrust 
(MCT) and Main boundary thrust (MBT) lie central to the region. Though the region falls 
under Indian Meteorological Department (IMD) IV and V seismic zone, from the studies it is 
also observed that the region is highly susceptible to the earthquake (Sharma et al., 2013). 
Away from the fault, declining trend is noticed but comes within the 50 km range of faults 
which is noticed from the Figure 2a. The weak lithology of Shivalik may be another reason in 
the region that increases the susceptibility to the earthquake. Due to high elevation in central 
parts and its neighbourhood, secondary effects of earthquakes viz liquefaction, mass 
movements are likely to intensify the risk of impacts by an earthquake (Dhar et al., 2017). 

Table 7.  Pairwise comparison matrix of causative factors of earthquake 

 G DTF FL SL EL NW 

G 1.00 0.20 3.00 7.00 8.00 0.24 

DTF 5.00 1.00 6.00 7.00 7.00 0.56 

FL 0.33 0.17 1.00 5.00 3.00 0.11 

SL 0.14 0.14 0.20 1.00 1.00 0.04 

EL 0.13 0.14 0.33 1.00 1.00 0.04 

Whereas, G=geology, DTF=distance to fault, FL=flow accumulation, SL=slope, EL=elevation, NW=normalised 
weight 

 

Figure 4a-4d.  Flood hazard Map (4a), Earthquake hazard map (4b), Soil erosion map (4c), Landslide 
hazard map (4d) 
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6.3 Soil Erosion Hazard Assessment 

In the case of soil hazard, pairwise comparison matrix of 9*9 parameters (as shown in 
Table 8) revealing normalised weights for the respective parameters is prepared and 
reliability is validated by consistency ratio whose value is 0.09<0.1. Out of all the factors, 
slope (22.69%), Rainfall (17.15%), elevation (12%), lineament density (9.4), and Land use 
land cover (9.7%) are major governing factors. All the nine factors are combined using the 
weighted overlay tool in ArcGIS to prepare a soil erosion susceptibility map (Figure 4c). Five 
susceptibility classes are produced using the Natural Jenk method of classification: very low, 
low, moderate, high, and very high. It is deduced from the map that 34.27% of the study area 
is highly susceptible to soil erosion whereas only 8.14% of the area is classified under very 
low and low susceptible zone. Approximately half of the area is moderately exposed to soil 
erosion hazards. The central, southeastern, eastern and northeastern parts lie in the hilly area 
and are, thus, observed to have classified under the high and very high susceptible zone. In 
this hilly region, slopes with less vegetation and barren land are more subjected to face soil 
erosion. In the southern area where plain areas are found, susceptibility to soil erosion is quite 
low. Thus, elevation coupled with slopes and vegetative cover plays an important role in 
enhancing the risk of soil erosion which is further escalated by rainfall (Ebhuoma et al., 
2021). Poor vegetation has a high tendency of runoff which in response increases the 
sediment carrying capacity (Khan et al., 2016). Curvature has also been noticed to be the 
main determinant in enhancing soil erosion as convex curvature is found in areas of high 
susceptibility zone (Aslam et al., 2021). 

Table 8.  Pairwise comparison for causative factors of soil erosion hazard 

 LULC NDVI RF EL SL DD C G LD NW 

LULC 1.00 1.00 0.33 1.00 0.33 1.00 2.00 4.00 1.00 0.097 
NDVI 1.00 1.00 0.50 0.33 0.20 0.50 1.00 3.00 0.33 0.064 

RF 3.00 2.00 1.00 1.00 1.00 3.00 1.00 5.00 3.00 0.172 
EL 1.00 3.00 1.00 1.00 0.33 3.00 2.00 3.00 1.00 0.128 
SL 3.00 5.00 1.00 3.00 1.00 5.00 1.00 5.00 3.00 0.227 
DD 1.00 2.00 0.33 0.33 0.20 1.00 0.33 2.00 0.33 0.058 
C 0.50 1.00 1.00 0.50 1.00 3.00 1.00 5.00 1.00 0.116 
G 0.25 0.33 0.20 0.33 0.20 0.50 0.20 1.00 2.00 0.045 
LD 1.00 3.00 0.33 1.00 0.33 3.00 1.00 0.50 1.00 0.094 

Whereas, SL=slope, EL=elevation, DD=drainage density, G=geology, LULC=land use land cover, RF=mean 
annual rainfall, LD= lineament density, NDVI= normalised difference vegetation index, C= Curvature, NW= 
normalised weight 

 

6.4 Landslide Hazard Assessment 

To prepare Landslide susceptibility zones, ten conditioning factors are considered as 
displayed in Table 9. A pairwise comparison matrix revealed that rainfall, slope, lineament 
density and geology are found to be major controlling factors whose relative contributing 



IDRiM (2024) 14 (x)        ISSN: 2185-8322 
DOI10.5595/001c.xxxxxx 

 17

weights are 22%, 20%,18% and 17% respectively. All factors have been superimposed to 
generate a Landslide Susceptibility Map as displayed in Figure 4d. Five classes are created 
using Natural Jenk methods-very low, low, moderate, high and very high. As determined by 
the consistency ratio which is 0.105, the method is reliable. The perusal of the map highlights 
that the maximum part of the area is under the moderate susceptibility zone which accounts 
for 51.22% of the total geographical area followed by high susceptibility (21.96%) and low 
susceptibility zone. The dominance of higher susceptibility toward landslides is observed in 
the central part and southeastern part whereas the southern part having a gentle slope are 
devoid of landslide. In the central part, rainfall received is comparatively less than in plain 
areas in the southern part, however, conjunction with high lineament density and the 
precipitous slope has increased the region’s proneness to landslide. Rainfall is, indeed, the 
main triggering factor (Long et al., 2018; Azarafza, 2021) but the presence of slope and 
geology in the region have proven to be the main causative factor in the occurrence of 
landslides. Region of high and very high susceptibility lies in the area having sedimentary 
rocks of Neogene and Paleogene rocks and undivided palaeozoic and Precambrian rocks are 
also present. Though the percentage share of the high and very high susceptible zone is less, 
the risk of landslide is enhanced due to human-induced cutting of rock for construction which 
is accelerated by rainfall and naked slopes (Fayaz et al., 2020). In the northeastern part, low 
to moderate risk has been observed whereas high risk is scattered and found along the slopes 
devoid of vegetation. Low risk in north eastern part may be due to the presence of snow-clad 
mountains where the risk of an avalanche may prevail.  

Table 9.  Pairwise comparison matrix of causative factors of landslide 

 GE LD SL EL LULC RF A S NDVI DTS NW 

G 1.00 0.50 2.00 6.00 4.00 0.33 5.00 5.00 5.00 3.00 0.17 
LD 2.00 1.00 2.00 5.00 4.00 0.33 6.00 4.00 4.00 4.00 0.18 
SL 0.50 0.50 1.00 5.00 4.00 4.00 6.00 4.00 5.00 5.00 0.20 
EL 0.17 0.20 0.20 1.00 0.20 0.20 2.00 0.33 0.33 0.50 0.03 

LULC 0.25 0.25 0.25 5.00 1.00 0.20 2.00 0.33 2.00 3.00 0.06 
RF 3.00 3.00 0.25 5.00 5.00 1.00 4.00 5.00 5.00 5.00 0.22 
A 0.20 0.17 0.17 0.50 0.50 0.25 1.00 0.33 0.33 0.50 0.02 
S 0.20 0.25 0.25 3.00 3.00 0.20 3.00 1.00 0.50 3.00 0.06 

NDVI 0.20 0.25 0.20 3.00 0.50 0.20 3.00 2.00 1.00 2.00 0.05 
DTS 0.33 0.25 0.20 2.00 0.33 0.20 2.00 0.33 0.50 1.00 0.04 

Whereas SL=slope, EL=elevation, DD=drainage density, G=geology, LULC=land use land cover, RF=mean 
annual rainfall, LD= lineament density, NDVI= normalised difference vegetation index, A= aspect, DTS= 
distance to stream, NW= normalised weight 

 

6.5 Droughts Hazard Assessment 

GIS-based drought assessment in combination with AHP has proven to be effective in 
hazard monitoring (Palachaudhari & Biswas, 2016; Ying et al., 2007).  In this study, nine 
factors have been selected and normalised weights are shown in Table 10. Their weights are 
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further used as an input while overlaying layers in GIS to prepare the Droughts Hazard 
Susceptibility map (Figure 4e). Mean annual temperature, mean maximum temperature, 
rainfall, evapotranspiration and relative humidity according to their corresponding weight viz 
23.36%, 21.97%, 17.56%, 15.03%, 10.3% are observed to have an impact the drought 
susceptibility. The AHP method is reliable as per the results of the consistency ratio which 
comes out to be 0.09 less than Saaty’s threshold. The map indicates that the region tends to 
face drought because 44.57% of the area is covered by a highly susceptible zone which is 
followed by a moderate risk zone (35.23%). In southern plains where lack of vegetation, high 
agricultural land, high mean maximum temperature, and low to moderate evapotranspiration 
have increased the likelihood of drought occurrence despite no such event has been 
experienced so far. Shortage of rainfall causes drought and maximum high temperature 
induced high evapotranspiration to create a drought-like condition in an agricultural area 
(Basu et al., 2015; Palachaudhari & Biswas, 2016). Northeastern and central hilly areas fall 
under moderate and high drought risk zone due to perennial snow-covered mountains, barren 
land and high evapotranspiration (Basu et al., 2015). Low susceptible zones are found in the 
central northern part mainly due to moderate rainfall, moderate evapotranspiration and highly 
vegetative slopes. The western part of the area shows a likelihood of a high level of drought 
hazard. 

Table 10.  Pairwise comparison matrix of causative factors causing drought 

 RF T Tmax ET RH S LULC SL NDVI NW 

RF 1.00 0.20 0.50 3.00 2.00 6.00 6.00 8.00 9.00 0.176 
T 5.00 1.00 0.50 1.00 2.00 6.00 6.00 8.00 9.00 0.234 

Tmax 2.00 2.00 1.00 1.00 3.00 6.00 6.00 8.00 6.00 0.220 
ET 0.33 1.00 1.00 1.00 2.00 6.00 6.00 8.00 3.00 0.150 
RH 0.50 0.50 0.33 0.50 1.00 6.00 6.00 8.00 3.00 0.109 
S 0.17 0.17 0.17 0.17 0.17 1.00 0.50 4.00 2.00 0.032 

LULC 0.17 0.17 0.17 0.17 0.17 2.00 1.00 2.00 4.00 0.037 
SL 0.13 0.13 0.13 0.13 0.13 0.25 0.50 1.00 2.00 0.020 

NDVI 0.11 0.11 0.17 0.33 0.33 0.50 0.25 0.50 1.00 0.022 
Whereas, SL=slope, ET=evapotranspiration, Tmax=mean maximum temperature, G=geology, LULC=land use 
land cover, RF=mean annual rainfall, RH=relative humidity, NDVI= normalised difference vegetation index, 
S=soil, NW= normalised weight 
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Figure 4e-4g.  Drought hazard map (4e), Forest fire hazard map (4f), Multi-hazard map (4g) 

6.6 Forest Fire Hazard Assessment 

Forest fire incidents are common in forest areas, especially during the summer season, 
which motivate to perform forest fire hazard assessment. The GIS-based environment in 
integration with AHP has provided us simplified approach to evaluate the risk of occurrence 
of a forest fire. Seven factors have been shortlisted whose pairwise matrix of 7x7 is displayed 
in the Table 11. The feasibility of the method can be checked by the consistency ratio which 
is 0.065<0.1. The map (Figure 4f) depicts that only 32.08% area is under a highly susceptible 
zone. Nearly 32.87% area falls under the moderate susceptible zone. Low susceptibility area 
to forest fire accounts for 26.9%. Elevation (21%), Land use land cover (36%), and 
temperature (18%) have been observed to put the maximum influence on fire occurrence. 
There are no well-defined zones noticed on the map. However, the southern plains having a 



IDRiM (2024) 14 (x)        ISSN: 2185-8322 
DOI10.5595/001c.xxxxxx 

 20

higher share of agricultural land is less susceptible to fire incidents despite the fact it receives 
maximum temperature compared to other areas. High to very high susceptibility is observed 
in vegetative slopes in the central and western parts of the region as vegetation density 
influences the amount of fire (Rasooli et al., 2018). In the eastern part, moderate 
susceptibility is noticed mainly due to the presence of shrub-laden slopes, and low 
temperature. Wind speed affects generally the spreading of the fires and enhances the 
intensity (Cruz & Alexander, 2019). 

Table 11.  Pairwise comparison of causative factors causing forest fire 

 T RF WS LULC EL SL A NW 

T 1.00 6.00 4.00 0.33 0.50 3.00 4.00 0.18 
RF 0.17 1.00 0.33 0.20 0.20 0.33 0.33 0.03 
WS 0.25 3.00 1.00 0.20 0.20 0.33 0.33 0.05 

LULC 3.00 5.00 5.00 1.00 3.00 4.00 5.00 0.36 
EL 2.00 5.00 5.00 0.33 1.00 2.00 4.00 0.21 
SL 0.33 3.00 3.00 0.25 0.50 1.00 2.00 0.10 
A 0.25 3.00 3.00 0.20 0.25 0.50 1.00 0.07 

Whereas, T=temperature, RF= mean annual rainfall, WS=wind speed, LULC= land use land cover, SL=slope, 
EL= elevation, A=aspect, NW=normalised weights 

 

6.7 Multi-hazard Assessment 

After overlaying all the hazards, a multi-hazard map is generated (Figure 4g) which reveals 
region susceptibility to multiple hazards. Five categories were generated using the Natural 
Jenk classification method to demonstrate which part of the area is more susceptible to multi-
hazards. It is depicted from the map that 45.79% of the area is prone to moderate 
susceptibility whereas 43.43% of the region is predisposed to high susceptibility. Low 
susceptibility is found in only 6.72% of the area. Interestingly, the central and eastern parts of 
the region are close to faults and weak lithology is dominated by a high level of multi-hazards. 
The Southern plain area is susceptible to moderate levels of multi-hazard. Increasing 
urbanisation in the southern part (Figure 2t) may also escalate the risk of multi-hazards. 

Table 12.  Weights showing the influence of hazard in multi-hazard susceptibility 

S. No. Hazard Weight 
1 Flood 28 
2 Landslide 18 
3 Earthquake 18 
4 Drought 15 
5 Forest Fire 13 
6 Soil Erosion 11 
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Figure 5.  Percentage wise area covered by each hazard in each susceptibility zone 

6.8 Validation 

Every work lack justification until it is verified. Keeping this in consideration, landslide 
and earthquake hazard maps are validated using the historical incidents in the point form 
downloaded from the Bhukosh, web-portal of Geological Survey of India which showed that 
maximum incidents are superimposed on high and very high susceptible zones. For validating 
flood hazard map, 250 points are generated from visual interpretation of Google Earth image. 
82.17% of the total points lie on high and moderate susceptible zone. Forest fire map is 
validated using fire points produced by Forest Survey of India. For droughts, Indian 
Meteorological Department (IMD) hazard atlas is utilised and it is observed that high 
susceptible region in our study area falls under IMD’s moderate drought zone.  

 

6.9 Discussion 

The results of the study indicated the assessment of the “Hazard” component of the 
UNDRR Risk Framework. The study revealed the multi-hazard susceptibility map of the 
study area as Nachappa (2020) stated that emphasis on single hazards is constructive but if an 
area is susceptible to multiple-hazards then potential danger should be considered from all the 
hazards despite only one. The present work provided a map that represents multiple threats 
from natural hazards dominantly covering six geo-hydrological hazards as per the 
geophysical condition of the area.  The multi-hazard map is prepared by considering 20 
natural stable and triggering factors whose mere presence increases the likelihood of the 
occurrence of hazards. The multi-criteria Analytical Hierarchy Process (AHP) played a 
dominant role and proved to be beneficial for combining the different factors in a multi-
hazard susceptibility map (Rahmati et al., 2019; Khatakho et al., 2021). Though this method 
is subjective in weighing criteria, we can enhance objectivity with literature and expert 
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involvement. Similarly, this method is appreciated by Morales and de Vries (2021). 
Multitudes of studies (Aksha et al., 2020; Khatakho et al., 2021; Morales & de Vries, 2021) 
have applied AHP to prepare a multi-hazard susceptibility/exposure map. The other studies 
on multi-hazard mapping have promoted machine learning and deep learning techniques but 
utilization of such techniques usually involved greater complexities and sophisticated techno-
how (Poyan et al., 2021; Javidan et al., 2020; Ullah et al., 2022). It is pertinent to mention 
that no study has so far been conducted to involve AHP in more than four hazards as this 
study. The study is unique in finding weightage quantitively using maximum and minimum 
normalisation method for individual hazards by utilizing the historical frequency and 
damages caused by hazard.   

The results indicated that rainfall, curvature, TWI, flow accumulation and drainage density 
have a substantial impact on floods affecting 61% of the study area which is evidenced by the 
work of Pourghasemi et al. (2020) and Pujari and Wayal (2023) who mentioned the 
occurrence of flooding in flat areas, coupling discharge accumulation and low runoff. Around 
43% of study area is affected by high soil erosion risk which is enhanced by mainly 
vegetation with less slope, high rainfall, and convex slopes. The work of Saini et al. (2015) 
and El Jazouli et al. (2017) also shows similarity. As far as landslides are concerned, geology, 
rainfall, slope, and lineament density are the main causative factor affecting 75% of the area 
which can also be observed in Dou et al., 2020; Fang et al., 2021; Khatakho et al. (2021). In 
the case of drought, evapotranspiration, maximum temperature, rainfall, and elevation make 
56% of the region susceptible as if any shortage in rainfall and excessive deforestation can 
turn out to be havoc for the study area. Singh et al. (2017) justified the drought event using 
the tree ring method which showed the 1780s to be the driest period for the North-western 
Himalayas which turns out to be the eastern part of the study area. The presence of the Kandi 
belt in the southern part that spans over three districts has a high propensity to droughts as 
Kumar et al. (2004) mentioned this area as a water-scarce region. Around 43% of the study 
area fall under critical forest fire region which is influenced by temperature, vegetative cover, 
and elevation. Gheshlaghi et al. (2020) and Rasooli et al. (2018) also showed similar results. 
From the final map, it is noticed that 43.43% of the area has a high propensity to suffer from 
multi-hazards. The area under the high susceptibility class lies close to faults and weak 
lithology as the distance to faults and geology reflected. 

The present study attempted to prioritize the high and very high susceptibility zones for 
further disaster risk management. This will facilitate in identification of communities and 
capacitating them being resilient to future challenges from these mishaps. This prioritization 
will further aid in minimizing the future impacts by adopting proactive measures, reducing 
individual financial burden and allocating resource during any disaster since these zones have 
higher probability of experiencing threat from multiple hazards.  

The limitation of the study is that there may be more space for additional factors to be used 
in the individual hazard assessment that can be utilised to elevate the impact of the study. The 
new methods like random forest, machine learning and convolutional neural network 
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methods have the ability to show an interaction between hazards which this study lacks. This 
study requires upscaling and downscaling of the data that have the ability to exaggerate the 
resolution of thematic layers. Utilising the final outcome of the study, suitable measure such 
as strengthening the capacity building measure, slope regeneration (on the construction site), 
awareness campaign, and providing disaster mitigation kit related information should be 
adopted for disaster risk reduction in the prioritized susceptibility zones. The future risk 
studies should be conducted in the study area on district scale for more accurate prediction of 
the hazards.  

 

7. CONCLUSION 

Multi-hazard susceptibility mapping is becoming popular and becoming state-of-the-art 
approach in disaster management. Having a predilection towards the multiple threats, 
prioritization for disaster risk management is crucial for resource allocation, reducing 
vulnerabilities and fostering risk reduction. The insights from the study highlighted that more 
than 70% of the area is predisposed to moderate and high levels of susceptibility. The central 
part and adjoining areas near faults should be given attention from the context of multi-
hazards. By comprehending the prioritized zones, we can build safer and more resilient 
communities capable of withstanding the challenges caused by multi-hazard. It is in response 
to these zones adaptive capacity of communities can be enhanced by proactive measures and 
comprehensive planning and targeted intervention by stakeholders to be undertaken for 
disaster risk reduction. 
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