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Abstract We use a Bayesian hierarchical model to quantify, at the district scale, the vulnerability of
population to rainfall-related events, such as floods, flash-floods, and landslides. As a measure of
vulnerability quantification we use the Relative Risk (RR). The RR is defined for each district and a given
time span, as the ratio of the (unknown) potential proportion of people affected in the district to a pre-
fixed, data-based, expected proportion of people affected. Thus, the RR is a measure of deviation from the
expected behaviour of damage to population in each district. It can be used as an indicator of anomalous
damage behaviour, by identifying those districts having a RR (say) significantly different from one. The
model employed for the RR analysis is a log-linear model which considers the number of affected people
in each district as the realization of a Poisson variable, and allows the inclusion of district-specific
covariates. The model also allows the inclusion of parameters that capture any structural spatial pattern on
the underlying RR surface, namely the so-called Conditionally Auto-Regressive, or CAR, effects. An
important result is the RR map of Venezuela, which summarizes the posterior distribution of the RR for
each district, and indicates that the most vulnerable districts form clusters in Nord-central and Western
Venezuela, in addition to other districts of high RR arranged in a less structured way.

Key words Vulnerability; Risk; Spatial hierarchical models; Bayesian modelling.
1. INTRODUCTION

Flash-floods, floods and landslides are frequent occurrences in most tropical countries around the
world, and cause yearly considerable losses, both human and material (ISDR 2004). The losses, however,
are not only the direct result of the occurrence of a natural phenomenon, but the combination of this with
the existing situation or coping capacity of the population and goods in whose spatial extension the
natural phenomenon occurs. For example, in (ISDR, 2004), ‘Risk’ is conceptualized as follows:

“Risk: The [...] expected losses (deaths, injuries, property, livelihoods, economic activity disrupted or
environment damaged) resulting from interactions between natural or human-induced hazards and
vulnerable conditions”.
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Immediately, the concepts ‘hazard’ and “vulnerability’ are clarified:

“Two elements are essential in the formulation of risk: a potential damaging event, phenomenon or
human activity — hazard; and the degree of susceptibility of the elements exposed to that source —
vulnerability.”

This discrimination between natural phenomenon and coping capacity or existing ‘situation’, has been
acknowledged for some time by researchers, and has led to various model formulations (see, for example,
Downing et al. 1999; Schulze 2001; Plate 1996) that consist of various interacting components, and of
which the output is a measure of the impact of the natural event. Thus, depending on the actual state of
these components in a given geographical region (whatever its definition may be), one can expect bigger
or smaller damages. Of course, the state of the components is given or estimated, either deterministically
(e.g. social indicators, amount of population present in the region), or stochastically (e.g. the occurrence
or not of precipitation, and the level of its intensity).

Regardless of the specific model employed, it is always useful to produce maps of the estimated
damage measure (e.g. risk), in order to effectively identify the regions to which attention should be paid
in first place, and to gain better understanding of the overall state and distribution of risk in the area of
study. Thus it is customary in risk research and reporting, the use of GIS (Geographic Information
Systems), as they provide useful plotting and analysis enhancing capabilities.

In this study, vulnerability is considered a dimensionless quantity conceived as the degree of loss or
damage, between 0 and 100%, of the Venezuelan population (number of fatalities, people affected or
injured, hereafter summarized as the number of “people affected™) due to rainfall-related events, such as
floods, flash-floods, and landslides. As a convenient implementation of this concept of vulnerability, the
proportion of people affected to the existing population exposed constitutes the measure of vulnerability

on which this work builds. Let p* be the global proportion (for the whole country) of people affected
within a given time-span; let p; be the proportion of people affected during the same time-span at district

i . Then it is possible to define a measure of relative vulnerability for each district, y; = s— This measure

conveys the relatively critical or satisfactory situation of each district concerning its vulnerability, as
placed within the big picture of the whole country. The parameter y; is customarily employed in disease

mapping and receives the name of “Relative Risk” within that context (see: Lawson et al. 2003). It
provides means of identifying “hotspots” in which the relative damages suffered by the population are
significantly higher than the average, and thus can be used as support for, e.g. governmental decision
making and intervention. This measure of (relative) vulnerability will be the object of this study, even
though we keep the name “Relative Risk” due to the origins of the methodology and its use in disease
mapping research. But we want to warn the reader that our main study variable is the population
vulnerability which is quantified in relative terms. We shall deal in the following with the quantification
and mapping of the relative risks of the Venezuelan districts. That is to say, districts constitute the spatial
unit of analysis in this work.

A Bayesian approach is employed, so full probability distributions are obtained for the relative risk of
each district, which enables an easy assessment of statistical significances and precision estimates for the
relative risks. Specifically, we use a hierarchical model that can accommodate covariates, such as
geographical variables. It also allows parameters for the identification and highlighting of relative risk
regional clusters, the so called Conditional Auto-Regressive (CAR) random effects.

In section 2 we introduce the basics of the models to be used later. In section 3 the data and specific
particulars of the study are given. In section 4 we present the results, such as relative risk map and its
interpretation, the parameter’s posterior distribution summaries, and the identification of clusters and
districts with high or low relative risks. Finally we provide conclusions and further possibilities for the
method.
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2. STATISTICAL MODELS

As stated before, in this study we will work at the district scale. We begin denoting by Y; the number
of people affected® in district i, in a given time span. The districts are here indexed as i=1,...,1 , where |
is the total number of districts in the country.

We consider Y; a random variable and assume a Poisson model on this variable, thus:
Y; ~ Poisson(%,) i=1,...1

In the above model, the 4 parameters could be related to one another (after all, they correspond to

districts some of which are neighbours to other districts), or they could even be the same parameter:
A=A, fori=1,.,1.

Further, the given parameters are decomposed as follows:
/li = Ei.l//i y |=1,,| .

Where E; is called the expected risk for district i (i=1,...,1), or expected number of losses or of

people affected, depending on the specific research context. (Desirable is that this expected number be as
close to zero as possible, but experience holds, that this is not a realistic assignment). This expected risk is

assigned in this work the value of E; =n;.p", where n, stands for the total number of inhabitants
(exposed people) at district i, and p* denotes the global proportion of people affected for all the country.

The parameter y; is called the relative risk for district i (i=1,...,1 ), and thus is a parameter of much
concern in this study. Now we see that y; can be interpreted as a multiplying factor to the expected
number of losses, given within the context of the Poisson model by 4 = E;.y; . It becomes of interest to
evaluate whether y; is significantly different (greater or smaller) than one, or whether it can be accepted
to be one, in which case the district is understood to behave as an average district of the country.

The model now focuses on the relative risks, providing prior probability distributions for these, as we
are using the Bayesian approach. The prior distributions are updated to posterior distributions which are a
compromise between the priors and the observed data. There are several possibilities for relative risks’
prior distributions (see Lawson 2003, chapter 6; or Banerjee et al. 2004, section 5.4), we provide some
below. On writing the prior distributions for the relative risks, we define different hierarchical models for

the number of people affected, Y;. Some detail is shown for the Gamma-Poisson model, but similar
explanations apply to the other models.

Gamma-Poisson model:

In order to estimate the posterior distributions to apply the Bayesian paradigm, the data likelihood and
the prior distributions for the data model parameters are defined as follows:

Likelihood level: Y; ~ Poisson(E;.y; ), i=1,..., .

Prior for v, : , ~Gamma(a,b), = 1!

The parameters a and b should be selected in a sensible fashion. Sensible fashion here means in such a

3 This concept will be clarified later in the text.
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way that they portray valuable information acquired in other (former) studies, or else that the data itself
determines most of the posterior distributions. For example (Banerjee et al. 2004), we could choose a= 4
and b=4 , which yield a mean of ux=a/b=1 (the “Null” value) and a standard deviation of

(;:w/ia/b2 5:0.5 that is big for this scale. Then the posterior distribution for everyy; , in the light of
available data y;, becomes:

v |ab,y; ~ Gamma(a+y; b+E;), i=1,..,1.

And the posterior mean of each relative risk becomes:

E(y; | y;,ab)= b+é' = ;SMR; +(1— a),)—

where w,; = and SMR; is normally called in Epidemiology the Standardized Mortality Ratio,

b+E

i
which is calculated as y; / E;. So the posterior mean is shown to be a weighted average of the SMR and the
a priori mean a/b.

Customary is, however, to assign also priors to a and b rather than specific values, in order to allow
data to dominate the posteriors, or else to smooth the influence of the parameters a and b. Thus the model
is finally stated by adding these last priors, for example (Lawson 2003):

Priors for a and b:
a~Exp(L,)
b~ Exp(L, )

Where Exp(@) stands for the exponential distribution with parameter ¢ and mean 1/6 . The
selection of L, and L, can be made through similar considerations as before, but now the posterior
distributions for the y; ’s are less sensible to this selection.

The sampling from the parameters’ posterior distributions is done using a Markov Chain Monte Carlo
(MCMC) simulation. To attain this, it is extremely useful to have the posterior full conditional
distribution* of each parameter or vector of parameters, which is nothing but the distribution of each
parameter in the model given all the other parameters and the data (Gilks et al. 1996, chapters 1 and 5).

In summary, the Gamma-Poisson model is written as:

Likelihood level: . ~ Poisson(E, ), 1= L+
Prior for y; : v, ~Gamma(ab), '= 1!
Priors for a and b:
a~Exp(L;)
b~ Exp(Ly )
! Usually, researchers actually use the posterior full conditional densities in the MCMC sampling,

but the “distribution” terminology is mostly used in the literature.



IDRng2013 3(1) ISSN: 2185-8322
DOI10.5595/idrimn.2013.0034

Log-linear models

A weakness of the Poisson-Gamma model is that it does not allow for the inclusion of covariates (such
as district-wise social or geographical variables), and does not allow for the explicit modelling of spatial
correlation. To overcome these inadequacies, researchers have come up with models that are linear on the
logarithm of the relative risk, and so belong to the realm of log-linear models. In this subsection, we
consider two types of log-linear models, one of them allows for covariates, and the other for covariates
and spatial correlation modelling.

Type 1 model:
The following decomposing of the logarithm of the relative risk is considered (Besag et al. 1991):

log(l//i): ﬁ0+ﬁ'ii +Vi , i= 1,...,1

Where %; stands for a vector of p covariates pertinent to district i; g is a vector of coefficients whose
components relate the covariates to the log-relative risk; and Fo s an overall mean of the log-relative
risks. The component Vi is a random effect intended to capture additional unstructured variability, and is

2_
assumed to come from a Normal distribution with zero mean and variance ¢ = 1/7h (to be estimated).
For ease of further explanation, the overall mean 4, and the vector of coefficients g are collapsed into a

single vector g = (ﬂO,B), and each covariates vector is added a 1 in its first coordinate: x; = (1,>‘<’i). Thus
we have the equivalent expressionlog(y; )= g.x; +v; , for each log-relative risk.

In summary, this model allows for covariates adjustment, via the vector g, and also allows for further
unstructured departure from the regression model, via the random effect v; .

The model equations are:

Likelihood level: Y; ~ Poisson(E;.y; ), i=1,...,1 .

where y; = exp(B.x; +V;).

Prior distributions:

P(p)=1, forevery g in ®P*"

v; |z, ~N(0,1/z,,) (they are assumed independent among each other)

7, ~ Gammal(a,, by, )

Commentaries:

1. The probability density assigned to g is not a proper density®, and so does not provide a
probability distribution for p. However, it is not strange in Bayesian statistics to make use of
improper prior densities when the respective posterior densities of the parameters in question will
result in proper densities. The reader interested in the necessary and sufficient conditions that
ensure the propriety of the posterior distributions for the kinds of models presented in this article,
is referred to: Sun et al. 2001, Ghosh et al. 1998, Song et al. 2006 and Eberly and Carlin 2000, and
the references therein.

5 Namely, the integral of this function over RP*! is infinity.
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2. The parameter ¢, , called the precision parameter of the distribution of v;, is unknown and so it

needs to be estimated. In the present model, we provide it with a prior distribution as well, and
seek to estimate its posterior distribution. To this end, we assign a Gamma distribution with
parameters a, and b, , and again wish the model to be insensible to the selection of these two
parameters. One possible choice, and the one applied in this study, is to take 2~ 0.5 ,
b,=0.0005 (Kelsal and Wakefield 1999), which results in a mean of a, /b, =1000 and a

variance of a, /bZ=2x10°.

Type 2 model

After adjustment for covariates and beyond-covariates’ heterogeneity effects, it is tenable to check
whether geographical proximity remains a factor influencing the correlations among the relative risks. To
this end it is adequate to add a component to the log-relative risks model that can adjust for correlation
assignable to spatial proximity. In this study, we use the Conditionally Auto-Regressive (CAR) random
effects model (Cressie and Chan 1989, Besag et al. 1991, Besag et al. 1995).

In this context, the model for the logarithm of the relative risk is extended to:
log(y; )= Bo + % +Vv; +c;, i=1,...,1.

Here, the random effect c; is the Conditional Auto-Regressive effect for each districti=1 . Each
of these random effects is influenced by those of the neighbouring districts. If a district i has a set ai of
m; immediate neighbouring districts (i.e., [5;|= m; ) then the a priori distribution for each of these effects,
given all the others c;,; and a scale parameter z. , is defined to be:

j#i

oL ] *)
o.M

where ¢, =— Zc That is, each CAR effect is a priori normally distributed with mean equal to the
m; itjed;

average of its neighbours, and a variance inversely proportional to the number of neighbours. The scale

parameter ¢, is unknown and must be estimated, or its probability distribution estimated.

Ci |97ilfc - N[

These conditionally defined distributions in (*), actually define a joint density (See Besag 1974, or
Kaiser and Cressie 2000) for ¢ =(c;,...,c,) and it can be seen to be equivalent to the following

formulation:
Pr(c|z, ) exp{— %"6‘ .Q.E}

where Q can be written in the form Q=M (1, ~B). M is a diagonal matrix of size Ixl and
components 1/z, m;, 1, is the identity matrix of size I and B is the adjacency matrix (with components bj
0’s or 1’s depending whether a district j is a neighbour or not of district i).

However, Q is singular and so the induced density is not proper. This is not strictly a problem, since

the posterior for ¢ ends up being proper, and this improper version of the CAR has been widely used in
applications. Since sometimes it is better anyway to have an a priori proper distribution, one can try to
keep as much as possible of the above-mentioned distribution and yet have it proper.
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One remedy (Banerjee et al. 2004) is simply to include an additional parameter ¥ and “move it” until
Q, =M ’1(1, —y.B) becomes non-singular. With the matrix components defined as before,

Q(y) =M ‘1(1, —y.B) happens to be non-singular for every y<(0,1). A prior distribution can also be

assigned to ¥ and its posterior distribution obtained; such an approach is followed in this study using a
uniform distribution.

3. DATA AND STUDY AREA
3.1 Study Area

We perform the analysis on all of Venezuela, taking districts (“Municipios”, in Venezuela) as spatial
units. The boundaries of these districts have evolved during the time-span for which we collected data
(1960 — 2000), so we use here the boundary configurations as of 2001. These were provided by the
Instituto Nacional de Estadistica (INE). The data collected is described below.

3.2 Information about the adverse water-related events

By an “event” we mean any reported incident where at least 10 people were somehow affected; either
on their property or in their physical integrity. We restrict here to the period January 1960 to December
2000. The collection of data has two sources: First we took the reports available at the database of the
Centre for Research on the Epidemiology of Disasters (CRED). Second, a research was undertaken at the
newspaper archive of the National Library of Venezuela in order to obtain more detailed information
about those cases, and other cases not taken into account by CRED. We used, whenever available, the
journals “EIl Nacional”, “El Universal”, and “Ultimas Noticias”, which have national coverage.

Out of these inquiries, we extracted the specific date and location of the events, sometimes at the
district level, sometimes obtaining the specific name of the town. We also extracted the number of people
affected on each event, subdivided according to: 1. Casualty, 2. Injured, and 3. Property lost or damaged.
In figure 1, the accumulated number of people affected is presented on the 2001 district map.

3.3 Geographic data

We included in the analysis the following geographic variables derived from a Digital Elevation
Model (DEM) having a resolution of 90 meters per pixel, provided by the Shuttle Radar Topographic
Mission (SRTM). These variables were totalized for each district with the aid of the IDRISI Geographic
Information System (GIS):

1. Elevation. From this variable the mean was obtained.

2. Slope. From this variable we considered the average, the percentage of the district having slopes
greater than 30 degrees (see figure 2) and the percentage of the district having less than 5 degrees.

We used the available hydrographical data to build a map of distances from each 90 meter pixel to the
closest river or lake. Unfortunately, this data was available at two different scales: North of the Orinoco
river the scale is 1:100000, while in the South it is 1:500000. This issue is mirrored in the map produced,
which is presented in figure 3.

In addition, we used the monthly “networked” precipitation anomaly maps at the 30”x30” scale of
Fekete et al. 2001. In these maps, the downstream routing of the precipitation is taken into account, and
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so the potential impact of an event downstream of a water body is accounted for. The anomaly for each
pixel is obtained by dividing the estimated “networked” precipitation by a baseline average provided for
each month of the year and each pixel. The data for the month of December 1999 is shown in figure 4 as
an example.

The population density of each district as in the year 2001 was employed as a proxy for the densities
during the study period. The data was kindly provided by the National Institute of Statistics (INE) and is
shown in figure 5. The uneven distribution of the population and its higher concentration around the main
urban centres is quite evident in this map.
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Figure 1: Total number of affected people per administrative unit during the period 1960-2000.
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4. RESULTS

As indicated above, we take districts as spatial units. Our objective is to estimate the probability
distribution of the relative risk for each district and identify the way in which the geographical variables
affect it. For each of these spatial units the variables presented in the previous section are obtained in the
form of convenient statistics of the pixel-based data. Namely, the following variables were taken as
explanatory variables for each spatial unit:

X : Proportion of the districts having a slope smaller than five degrees.

X, : Proportion of the districts having a slope greater than thirty degrees.

Xs : Per district average distance to secondary water bodies®, measured in kms.

X, : District’s average distance to primary water bodies, measured in kms.

Xs : District’s average slope, in degrees.

Xe : Logarithm of the district’s average elevation. The elevation was available in Metres Above
Sea Level (MASL).

e X5 : Logarithm of the district’s 2001 population density, as portrayed by the National Institute for
Statistics. The population density is expressed in inhabitants per squared kilometre.

For the sake of model fitting, al variables were standardized, as this transformation is prone to reduce
MCMC chains’ convergence problems. The Gamma-Poison model and the two types of log-linear models
of section 2, using different subsets of variables X; through X; above as explanatory variables, were
implemented in the WinBugs software (Spiegelhalter et al. 2003). For each model, two chains were
produced and convergence of the MCMC chains was monitored by means of the Brooks and Gelman
criterion implemented in WinBugs. Convergence in general was clearly attained for most parameters,
although certainly not so for some CAR effects in the type two models. As model selection criterion, the
criterion due to Gelfand and Gosh 1998 was used. The selected model is a type two model that includes
Xs, X4 and X5 as explanatory variables, that is, the equation for the logarithm of the relative risk in each
spatial unit i, is:

l0g(y;)= Bo + BsXiz+ BaXia+ BrXiz +Vi+¢, i=1,,0.

4.1 Effect of the selected explanatory variables

The MCMC based approximate densities for the coefficients of the included explanatory variables and
that of the intercept are shown in Figure 6.

A decrease in variables X3 and X, is associated with an increase in (log of ) the relative risk, since the
locations of these parameters’ distributions are clearly to the left of zero. Let us remember that, in
agreement with the definition of these variables, the smaller the values of X3 and X,, the higher the
density of water bodies or rivers in the spatial unit. An important fraction of the lower income population
in rural and urban areas has settled in the flood plains and river margins throughout the country; therefore
the lower the values of X3 and X, the larger the number of people potentially affected by rainfall related
events.

® Those represented with lines at the working scale of 1:250,000. The primary water bodies are those
represented with polygons.
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A positive association is seen between population density and relative risk, as portrayed by the density
of the coefficient of X;. This is likely to mirror the fact that, in Venezuela, usually big cities are
surrounded by or comprise inside of its poorer zones with very deficient infrastructure and services (the
so-called marginal zones), built on inadequate land and which are prone to landslides and/or floods when

strong precipitation occurs.

Density for the Int Density for coeffi
<
™ .
> © o > ]
g g
8 © 4 8
o |
—
c |
o o
o _| c |
T T T T T T T T T T 1
10 8 -6 -4 6 5 4 3 2 -1 0 1
Alpha Alpha3
Density for coeffic Density for coeffi
o To]
™ i
3 | -
2 o - 2 o
2 3 2
5] 3]
o o
SHN 10
o | S |
o —
o o
o4 - - o |
T T T T T T T T T T
8 6 4 -2 0 2 00 05 10 15
Alpha4 Alpha7

Figure 6: Kernel smoothing probability densities for the intercept and the three explanatory variables of
the selected model. All densities are produced using samples from the MCMC simulated chains.

4.2 Relative Risks Map

The expected relative risks for all districts are presented in Figure 7. These are computed, for each
district, as the average of the respective MCMC relative risk chain. The expected relative risks that are
smaller than one are masked with lighter colours. A cluster of relative risks greater than one are visible in
the North-Central region of the country. The two district clusters at the south of the country were induced
by a single big event in June of 1996, which affected this region of rather poor infrastructure. The
presence of risky districts in the west extreme of the country can be explained by the presence of the
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Andean ridge, which then abruptly descends towards the South-West of the country, into a very flat and
low land. These characteristics can also explain the presence of the two risky districts in the South-West.
As a complement to the expected relative risk map, the standard deviations of the relative risk
distributions are shown in Figure 8 above.

4.3 Model Validation

In this section we report briefly on model validation. We employ a variant of cross-validation as
means of identifying districts of which the observed risk is “too high” or “too low” under the assumed
model, as measured through a suitable discrepancy criterion (DC) to be introduced shortly. Districts or
areas presenting an extreme value of the DC will be named divergent districts or areas. The result of this
validation analysis can be: 1. we find no divergent districts, which would imply a reasonable fitness of the
model. 2. We find one or two divergent districts only, which would imply a reasonable fitness of the
model but, at the same time, the presence of one or two “hot spots” or “interesting areas” where the
influence of covariates or the spatial association pattern deviates considerably from that of the rest of the
districts. 3. Relatively many (say, more that 1-2%) of the districts show a divergent response, which
would imply the inadequacy of the fitted model.

The idea of checking the consistency of data with a model is standard in statistics and the general
approach, of which the analysis here presented is a particular application, can be called the “predictive
distribution approach”. For an introduction to it, see chapter 9 of Gilks et al. 1996 and the references
therein. The interested reader is referred to Stern and Cressie (2000) and Marshall and Spiegelhalter
(2003) for further details on the application of the concept specifically to disease mapping.

Since we have fitted a model to the data presented in section 3, it is in principle possible, for any
positive integer Y, .., representing a potential number of people affected at district i during a time-span of

40 years, to compute the probability of Y, ., according the fitted model. This probability would be, if we

AYi‘rep —ﬂt
use a Poisson model such as those presented in section 2, given by Pr(Zi = yiyrep|Data)=—|, where
i,rep-

Z; stands for random variable “Number of people affected at district i”, whereas

~

A=E, .exp([}o + By X3+ BaXi 4+ By X1+, +6i) is built from estimates of the model parameters such as,
for example, the averages of the values with which plots in Figure 6 were created and their equivalents for
effects c; and v;. One idea for testing the adequacy of the model could be to compute in a like manner

the  probabilities of the wvalues actually observed at districts i=1,...,I; namely
AYi‘obs —i

Pr(Zi = yiyobs|Data)=—el, and check whether these probabilities are “too low” in some sense. If the
yi,obs-

model declares unlikely even the data that was actually observed, then we have reasons for discarding
such a model. This is basically the idea that we implement for our validation analysis, with three
modifications:

Firstly, we shall use the probability of {Z; <y . | instead of that of {z; = y; ., | as a discrepancy

criterion. A too high value of the criterion indicates that the fitted model predicts mostly values which are
considerably under the observed ones (under-estimates losses), whereas a too low value of the criterion
means that the model predicts mostly values above the observed ones (over-estimates losses). In this work,
we define values above 0.9 as “too high” and values under 0.1 as “too low”.
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Secondly, we shall compute the probability constituting our discrepancy criterion for each district i on the
basis of all observed data except for y; . itself, namely: Pr(Zi < yivobS|Data— {yivobS }) Thus, the technique

is a version of the cross-validation method. As shorthand for Data - {y; ., | We shall write y_; .

Thirdly, instead of computing plug-in estimates for the parameters and then computing the desired
probability, we shall use the “posterior predictive probability” distribution (see, for example, chapter 1 of
Gelman et al. 2004), which is customary in Bayesian statistics:

Pr(zi = yi,obs|y7i ): I Pr(zi = yi,obs|9i ) Pr(ei |y7i )dei
)

which means that DC;, the discrepancy criterion for district i is given by:

Yi,obs

DC; =Pr{Z; < Yigw|yi)= [Prizi =nio)prloily ko (ea.1)

n=0 (@

The integral in equation 1 is along all possible values of the parameters g; = {B, Vi, G }; this integral is

normally found by simulation, on the basis of the MCMC chains of the model parameters. Thus, in
principle, one should run the MCMC algorithm up to | = 335 times, leaving one district at a time, in order
to compute the discrepancy criterion for each district. This can be computationally very demanding.
Ingenious techniques to approximate the criterion by running the MCMC algorithm only once are the
object of the papers of Stern and Cressie 2000 and Marshall and Spiegelhalter 2003. For the current
analysis, we employed the method proposed by Stern and Cressie.

Specific details are rather numerous and are not susceptible of being addressed within the small space
of this section; the reader may see the bibliography given above for details. Hopefully we have here
conveyed the basic idea behind this “posterior predictive” cross-validation variant.

In Figure 9, we present the result of applying cross-validation to the data and the model selected. Only
2 out of 335 districts presented an extreme value for the discrepancy criterion. As explained above, rather
than a sign of model inadequacy, this is indication of a particular response of these districts, potentially
due to one or more unconsidered factors present at each of them, which should be investigated. One of the
anomalous districts (Zamora, Aragua state) exhibits a DC value greater than 0.9, which means that the
model under-estimates the expected number of people affected. The other one (lIribarren, Lara state)
presents a DC value smaller than 0.1, which indicates under-estimation.

Summarizing, the model is adequate, according to the cross-validation method employed. Also, two
districts have been identified as providing a different response with respect to the covariates analysed and
the spatial association with its neighbouring districts, as compared with all other districts studied.

4.4 Inclusion of the Precipitation Variable

The reader might have already noticed that precipitation data, in the form of monthly anomalies on a
30”x30” grid, was available for this study and yet is not reflected in the final fitted model. The inclusion
of the precipitation variable as a time series of monthly rainfall anomalies implies a spatio-temporal
model, in which the number of parameters to estimate increases considerably. In this first attempt to
picture the overall situation of the relative risks in Venezuela, we considered it sounder not to include the
precipitation variable. One of the problems with a spatio-temporal model for precipitation related events
is the great number of no-case (“zero events™) that is to be expected in many districts along the time-span
considered. As an example, using the monthly precipitation anomalies of section 3 and a study time-span
of 40 years yields 480 time-steps for each district, in most of which a zero will result, making inference
very difficult and MCMC fitting (convergence) unfeasible. One possibility that may be worth trying in
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the future is the use of the “zero inflated” models (Lambert 1992, Ghosh et al. 2006) where this kind of
data becomes tractable.

values for val.cr

I Over-estimates

I Under-estimates

500.0km

Figure 9: Divergent areas, showing a different response pattern as compared to the rest of the districts.

5. CONCLUSIONS

A methodology taken from epidemiology when dealing with disease mapping was successfully
applied to the mapping of relative risks as a measure of vulnerability of people being affected by
landslides and/or floods at the district scale in Venezuela. An overview of the situation for the whole
country was then obtained, which can be a first step for future studies at local scales. Geographical
variables, specifically, density of water bodies’ network and population density were found to be
positively associated with an increase in the relative risk at the district scale. The presence of the CAR
random coefficients in the selected model, however, makes a case for a deeper understanding of the
mechanism determining the spatial distribution of the relative risks.
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