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Abstract We use a Bayesian hierarchical model to quantify, at the district scale, the vulnerability of 
population to rainfall-related events, such as floods, flash-floods, and landslides. As a measure of 
vulnerability quantification we use the Relative Risk (RR). The RR is defined for each district and a given 
time span, as the ratio of the (unknown) potential proportion of people affected in the district to a pre-
fixed, data-based, expected proportion of people affected. Thus, the RR is a measure of deviation from the 
expected behaviour of damage to population in each district. It can be used as an indicator of anomalous 
damage behaviour, by identifying those districts having a RR (say) significantly different from one. The 
model employed for the RR analysis is a log-linear model which considers the number of affected people 
in each district as the realization of a Poisson variable, and allows the inclusion of district-specific 
covariates. The model also allows the inclusion of parameters that capture any structural spatial pattern on 
the underlying RR surface, namely the so-called Conditionally Auto-Regressive, or CAR, effects. An 
important result is the RR map of Venezuela, which summarizes the posterior distribution of the RR for 
each district, and indicates that the most vulnerable districts form clusters in Nord-central and Western 
Venezuela, in addition to other districts of high RR arranged in a less structured way. 

Key words Vulnerability; Risk; Spatial hierarchical models; Bayesian modelling. 

 

1. INTRODUCTION 

 

Flash-floods, floods and landslides are frequent occurrences in most tropical countries around the 
world, and cause yearly considerable losses, both human and material (ISDR 2004). The losses, however, 
are not only the direct result of the occurrence of a natural phenomenon, but the combination of this with 
the existing situation or coping capacity of the population and goods in whose spatial extension the 
natural phenomenon occurs. For example, in (ISDR, 2004), ‘Risk’ is conceptualized as follows: 

 “Risk: The […] expected losses (deaths, injuries, property, livelihoods, economic activity disrupted or 
environment damaged) resulting from interactions between natural or human-induced hazards and 
vulnerable conditions”. 
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Immediately, the concepts ‘hazard’ and ‘vulnerability’ are clarified: 

“Two elements are essential in the formulation of risk: a potential damaging event, phenomenon or 
human activity – hazard; and the degree of susceptibility of the elements exposed to that source – 
vulnerability.” 

This discrimination between natural phenomenon and coping capacity or existing ‘situation’, has been 
acknowledged for some time by researchers, and has led to various model formulations (see, for example, 
Downing et al. 1999; Schulze 2001; Plate 1996) that consist of various interacting components, and of 
which the output is a measure of the impact of the natural event. Thus, depending on the actual state of 
these components in a given geographical region (whatever its definition may be), one can expect bigger 
or smaller damages. Of course, the state of the components is given or estimated, either deterministically 
(e.g. social indicators, amount of population present in the region), or stochastically (e.g. the occurrence 
or not of precipitation, and the level of its intensity). 

Regardless of the specific model employed, it is always useful to produce maps of the estimated 
damage measure (e.g. risk), in order to effectively identify the regions to which attention should be paid 
in first place, and to gain better understanding of the overall state and distribution of risk in the area of 
study. Thus it is customary in risk research and reporting, the use of GIS (Geographic Information 
Systems), as they provide useful plotting and analysis enhancing capabilities.  

In this study, vulnerability is considered a dimensionless quantity conceived as the degree of loss or 
damage, between 0 and 100%, of the Venezuelan population (number of fatalities, people affected or 
injured, hereafter summarized as the number of “people affected”) due to rainfall-related events, such as 
floods, flash-floods, and landslides. As a convenient implementation of this concept of vulnerability, the 
proportion of people affected to the existing population exposed constitutes the measure of vulnerability 
on which this work builds. Let *p  be the global proportion (for the whole country) of people affected 
within a given time-span; let ip  be the proportion of people affected during the same time-span at district 
i . Then it is possible to define a measure of relative vulnerability for each district, *p

p
i

i=ψ . This measure 

conveys the relatively critical or satisfactory situation of each district concerning its vulnerability, as 
placed within the big picture of the whole country. The parameter iψ  is customarily employed in disease 
mapping and receives the name of “Relative Risk” within that context (see: Lawson et al. 2003). It 
provides means of identifying “hotspots” in which the relative damages suffered by the population are 
significantly higher than the average, and thus can be used as support for, e.g. governmental decision 
making and intervention. This measure of (relative) vulnerability will be the object of this study, even 
though we keep the name “Relative Risk” due to the origins of the methodology and its use in disease 
mapping research. But we want to warn the reader that our main study variable is the population 
vulnerability which is quantified in relative terms. We shall deal in the following with the quantification 
and mapping of the relative risks of the Venezuelan districts. That is to say, districts constitute the spatial 
unit of analysis in this work. 

A Bayesian approach is employed, so full probability distributions are obtained for the relative risk of 
each district, which enables an easy assessment of statistical significances and precision estimates for the 
relative risks. Specifically, we use a hierarchical model that can accommodate covariates, such as 
geographical variables. It also allows parameters for the identification and highlighting of relative risk 
regional clusters, the so called Conditional Auto-Regressive (CAR) random effects. 

In section 2 we introduce the basics of the models to be used later. In section 3 the data and specific 
particulars of the study are given. In section 4 we present the results, such as relative risk map and its 
interpretation, the parameter’s posterior distribution summaries, and the identification of clusters and 
districts with high or low relative risks. Finally we provide conclusions and further possibilities for the 
method. 
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2. STATISTICAL MODELS 

 

As stated before, in this study we will work at the district scale. We begin denoting by Yi the number 
of people affected3 in district i, in a given time span. The districts are here indexed as I,=i 1,... , where I 
is the total number of districts in the country. 

We consider Yi a random variable and assume a Poisson model on this variable, thus: 

( )ii λPoissonY ~  , I,=i 1,... . 

In the above model, the iλ  parameters could be related to one another (after all, they correspond to 
districts some of which are neighbours to other districts), or they could even be the same parameter: 

λ=λi , for I,=i 1,... . 

Further, the given parameters are decomposed as follows: 

iii ψE=λ . , I,=i 1,... . 

Where iE  is called the expected risk for district i ( I,=i 1,... ), or expected number of losses or of 
people affected, depending on the specific research context. (Desirable is that this expected number be as 
close to zero as possible, but experience holds, that this is not a realistic assignment). This expected risk is 
assigned in this work the value of *.pnE ii = , where in  stands for the total number of inhabitants 
(exposed people) at district i, and *p  denotes the global proportion of people affected for all the country. 

The parameter iψ  is called the relative risk for district i ( I,=i 1,... ), and thus is a parameter of much 
concern in this study. Now we see that iψ  can be interpreted as a multiplying factor to the expected 
number of losses, given within the context of the Poisson model by iii ψE=λ . . It becomes of interest to 
evaluate  whether iψ  is significantly different (greater or smaller) than one, or whether it can be accepted 
to be one, in which case the district is understood to behave as an average district of the country. 

The model now focuses on the relative risks, providing prior probability distributions for these, as we 
are using the Bayesian approach. The prior distributions are updated to posterior distributions which are a 
compromise between the priors and the observed data. There are several possibilities for relative risks’ 
prior distributions (see Lawson 2003, chapter 6; or Banerjee et al. 2004, section 5.4), we provide some 
below. On writing the prior distributions for the relative risks, we define different hierarchical models for 
the number of people affected, Yi. Some detail is shown for the Gamma-Poisson model, but similar 
explanations apply to the other models.  

 

Gamma-Poisson model: 

In order to estimate the posterior distributions to apply the Bayesian paradigm, the data likelihood and 
the prior distributions for the data model parameters are defined as follows: 

Likelihood level: ( )iii ψEPoissonY .~ , I,=i 1,... . 

Prior for iψ : ( )ba,Gammaψi ~ , i= 1,. .. , I . 

The parameters a and b should be selected in a sensible fashion. Sensible fashion here means in such a 
                                                      
3  This concept will be clarified later in the text. 
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way that they portray valuable information acquired in other (former) studies, or else that the data itself 
determines most of the posterior distributions. For example (Banerjee et al. 2004), we could choose 4=a  
and 4=b , which yield a mean of  1=ba=μ /  (the “Null” value) and a standard deviation of 

( ) 0.52 =ba=σ /  that is big for this scale. Then the posterior distribution for every iψ , in the light of 
available data yi, becomes: 

ii yb,a,|ψ ~ ( )ii E+b,y+aGamma , I,=i 1,... . 

And the posterior mean of each relative risk becomes:  

( )
b
a)ω(+SMRω=

E+b
y+a

=ba,,y|ψE iii
i

i
ii .1− 0 

where  
i

i
i E+b

E
=ω  and SMRi is normally called in Epidemiology  the Standardized Mortality Ratio, 

which is calculated as yi / Ei. So the posterior mean is shown to be a weighted average of the SMR and the 
a priori mean ba / . 

Customary is, however, to assign also priors to a and b rather than specific values, in order to allow 
data to dominate the posteriors, or else to smooth the influence of the parameters a and b. Thus the model 
is finally stated by adding these last priors, for example (Lawson 2003): 

Priors for a and b: 

)Exp(Lb
)Exp(La

b

a

~
~

 

Where )Exp(θ  stands for the exponential distribution with parameter θ  and mean θ/1 . The 
selection of aL  and bL  can be made through similar considerations as before, but now the posterior 
distributions for the iψ ’s are less sensible to this selection. 

The sampling from the parameters’ posterior distributions is done using a Markov Chain Monte Carlo 
(MCMC) simulation. To attain this, it is extremely useful to have the posterior full conditional 
distribution4  of each parameter or vector of parameters, which is nothing but the distribution of each 
parameter in the model given all the other parameters and the data (Gilks et al. 1996, chapters 1 and 5). 

In summary, the Gamma-Poisson model is written as: 

Likelihood level: ( )iii ψEPoissonY .~ , . 

Prior for iψ : ( )ba,Gammaψi ~ , i= 1,. .. , I . 

Priors for a and b: 

)Exp(Lb
)Exp(La

b

a

~
~

 

 

                                                      
4  Usually, researchers actually use the posterior full conditional densities in the MCMC sampling, 
but the ‘distribution’ terminology is mostly used in the literature. 

i= 1,. .. , I
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Log-linear models 

A weakness of the Poisson-Gamma model is that it does not allow for the inclusion of covariates (such 
as district-wise social or geographical variables), and does not allow for the explicit modelling of spatial 
correlation. To overcome these inadequacies, researchers have come up with models that are linear on the 
logarithm of the relative risk, and so belong to the realm of log-linear models. In this subsection, we 
consider two types of log-linear models, one of them allows for covariates, and the other for covariates 
and spatial correlation modelling. 

Type 1 model: 

The following decomposing of the logarithm of the relative risk is considered (Besag et al. 1991): 

( ) iii v+xβ+β=ψ


.log 0 , i= 1,. .. , I . 

Where ix
  stands for a vector of p covariates pertinent to district i; β


 is a vector of coefficients whose 

components relate the covariates to the log-relative risk; and β0  is an overall mean of the log-relative 
risks. The component vi  is a random effect intended to capture additional unstructured variability, and is 
assumed to come from a Normal distribution with zero mean and variance σ

2= 1/τh  (to be estimated). 
For ease of further explanation, the overall mean 0β  and the vector of coefficients β


 are collapsed into a 

single vector ( )β,β=β


0: , and each covariates vector is added a 1 in its first coordinate: ( )ii x=x


1,: . Thus 
we have the equivalent expression ( ) iii v+xβ=ψ .log , for each log-relative risk. 

In summary, this model allows for covariates adjustment, via the vector β , and also allows for further 
unstructured departure from the regression model, via the random effect iv . 

The model equations are: 

Likelihood level: ( )iii ψEPoissonY .~ , I,=i 1,... . 

where ( )iii v+xβ=ψ .exp . 

Prior distributions: 

( ) 1=βP , for every β  in 1+pℜ  

( )hhi τNτ|v /0,1~  (they are assumed independent among each other) 

( )hhh b,aGammaτ ~  

 

Commentaries:  

1. The probability density assigned to β  is not a proper density 5 , and so does not provide a 
probability distribution for β . However, it is not strange in Bayesian statistics to make use of 
improper prior densities when the respective posterior densities of the parameters in question will 
result in proper densities. The reader interested in the necessary and sufficient conditions that 
ensure the propriety of the posterior distributions for the kinds of models presented in this article, 
is referred to: Sun et al. 2001, Ghosh et al. 1998, Song et al. 2006 and Eberly and Carlin 2000, and 
the references therein. 

                                                      
5  Namely, the integral of this function over 1+pℜ  is infinity. 
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2. The parameter hτ , called the precision parameter of the distribution of iv , is unknown and so it 
needs to be estimated. In the present model, we provide it with a prior distribution as well, and 
seek to estimate its posterior distribution. To this end, we assign a Gamma distribution with 
parameters ha  and hb , and again wish the model to be insensible to the selection of these two 

parameters. One possible choice, and the one applied in this study, is to take ah= 0 .5 , 
bh= 0 .0005  (Kelsal and Wakefield 1999), which results in a mean of 1000=ba hh /  and a 

variance of 62 102×=ba hh / . 

 

Type 2 model 

After adjustment for covariates and beyond-covariates’ heterogeneity effects, it is tenable to check 
whether geographical proximity remains a factor influencing the correlations among the relative risks. To 
this end it is adequate to add a component to the log-relative risks model that can adjust for correlation 
assignable to spatial proximity. In this study, we use the Conditionally Auto-Regressive (CAR) random 
effects model (Cressie and Chan 1989, Besag et al. 1991, Besag et al. 1995). 

In this context, the model for the logarithm of the relative risk is extended to: 

( ) iiii c+v+xβ+β=ψ


.log 0 , I,=i 1,... . 

Here, the random effect ic  is the Conditional Auto-Regressive effect for each district I,=i 1,... . Each 
of these random effects is influenced by those of the neighbouring districts. If a district i has a set i∂  of 

im  immediate neighbouring districts (i.e., | | ii m=∂ ) then the a priori distribution for each of these effects, 
given all the others ijc ≠  and a scale parameter cτ , is defined to be: 

cii τ,c|c −  ~ 








ic
i mτ
,cN

.
1  (*) 

where ∑
∂∈ ijj

j
i

i c
m

=c
:

1 . That is, each CAR effect is a priori normally distributed with mean equal to the 

average of its neighbours, and a variance inversely proportional to the number of neighbours. The scale 
parameter cτ  is unknown and must be estimated, or its probability distribution estimated. 

These conditionally defined distributions in (*), actually define a joint density (See Besag 1974, or 
Kaiser and Cressie 2000) for c

 = ( )Ic,,c …1  and it can be seen to be equivalent to the following 
formulation: 

( )







−∝ cQc
τ

τ|c tc
c


..

2
expPr  

where Q  can be written in the form ( )BM=Q I −
− 11 .  M is a diagonal matrix of size IxI and 

components 1/ cτ mi , 1I  is the identity matrix of size I and B is the adjacency matrix (with components bij 
0’s or 1’s depending whether a district j is a neighbour or not of district i). 

However, Q  is singular and so the induced density is not proper. This is not strictly a problem, since 
the posterior for c

  ends up being proper, and this improper version of the CAR has been widely used in 
applications. Since sometimes it is better anyway to have an a priori proper distribution, one can try to 
keep as much as possible of the above-mentioned distribution and yet have it proper. 
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One remedy (Banerjee et al. 2004) is simply to include an additional parameter  and “move it” until 

 becomes non-singular. With the matrix components defined as before, 

 happens to be non-singular for every .  A prior distribution can also be 

assigned to  and its posterior distribution obtained; such an approach is followed in this study using a 
uniform distribution. 

 

3. DATA AND STUDY AREA 
  
3.1 Study Area 

 
We perform the analysis on all of Venezuela, taking districts (“Municipios”, in Venezuela) as spatial 

units. The boundaries of these districts have evolved during the time-span for which we collected data 
(1960 – 2000), so we use here the boundary configurations as of 2001. These were provided by the 
Instituto Nacional de Estadistica (INE). The data collected is described below. 

 

3.2 Information about the adverse water-related events  

By an “event” we mean any reported incident where at least 10 people were somehow affected; either 
on their property or in their physical integrity.  We restrict here to the period January 1960 to December 
2000. The collection of data has two sources: First we took the reports available at the database of the 
Centre for Research on the Epidemiology of Disasters (CRED). Second, a research was undertaken at the 
newspaper archive of the National Library of Venezuela in order to obtain more detailed information 
about those cases, and other cases not taken into account by CRED. We used, whenever available, the 
journals “El Nacional”, “El Universal”, and “Últimas Noticias”, which have national coverage. 

Out of these inquiries, we extracted the specific date and location of the events, sometimes at the 
district level, sometimes obtaining the specific name of the town. We also extracted the number of people 
affected on each event, subdivided according to: 1. Casualty, 2. Injured, and 3. Property lost or damaged. 
In figure 1, the accumulated number of people affected is presented on the 2001 district map. 

 

3.3 Geographic data 

We included in the analysis the following geographic variables derived from a Digital Elevation 
Model (DEM) having a resolution of 90 meters per pixel, provided by the Shuttle Radar Topographic 
Mission (SRTM). These variables were totalized for each district with the aid of the IDRISI Geographic 
Information System (GIS): 

1. Elevation. From this variable the mean was obtained. 

2. Slope. From this variable we considered the average, the percentage of the district having slopes 
greater than 30 degrees (see figure 2) and the percentage of the district having less than 5 degrees. 

We used the available hydrographical data to build a map of distances from each 90 meter pixel to the 
closest river or lake. Unfortunately, this data was available at two different scales: North of the Orinoco 
river the scale is 1:100000, while in the South it is 1:500000. This issue is mirrored in the map produced, 
which is presented in figure 3. 

In addition, we used the monthly “networked” precipitation anomaly maps at the 30”x30” scale of 
Fekete et al. 2001. In these maps, the downstream routing of the precipitation is taken into account, and 

γ

( ) ( )BγM=Q Iγ .11 −−

( ) ( )BγM=Q Iγ .11 −− ( )0,1∈γ

γ
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so the potential impact of an event downstream of a water body is accounted for. The anomaly for each 
pixel is obtained by dividing the estimated “networked” precipitation by a baseline average provided for 
each month of the year and each pixel. The data for the month of December 1999 is shown in figure 4 as 
an example. 

The population density of each district as in the year 2001 was employed as a proxy for the densities 
during the study period. The data was kindly provided by the National Institute of Statistics (INE) and is 
shown in figure 5. The uneven distribution of the population and its higher concentration around the main 
urban centres is quite evident in this map. 

 

 

 
Figure 1: Total number of affected people per administrative unit during the period 1960-2000. 
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Figure 2: Locations having more than 30 degrees of slope 

 
Figure 3: Map of distances (in kms) to the nearest river or lake. 
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Figure 4: Networked rainfall anomalies for December 1999 with respect to the baseline rainfall 

climatology period 1960-1990. 

   
Figure 5: Population density in Venezuela, 2001. 
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4. RESULTS 
 

As indicated above, we take districts as spatial units. Our objective is to estimate the probability 
distribution of the relative risk for each district and identify the way in which the geographical variables 
affect it. For each of these spatial units the variables presented in the previous section are obtained in the 
form of convenient statistics of the pixel-based data. Namely, the following variables were taken as 
explanatory variables for each spatial unit: 

• X1 : Proportion of the districts having a slope smaller than five degrees. 
• X2 : Proportion of the districts having a slope greater than thirty degrees. 
• X3 : Per district average distance to secondary water bodies6, measured in kms. 
• X4 : District’s average distance to primary water bodies, measured in kms. 
• X5 : District’s average slope, in degrees. 
• X6 : Logarithm of the district’s average elevation. The elevation was available in Metres Above 

Sea Level (MASL).  
• X7 : Logarithm of the district’s 2001 population density, as portrayed by the National Institute for 

Statistics. The population density is expressed in inhabitants per squared kilometre. 
 

For the sake of model fitting, al variables were standardized, as this transformation is prone to reduce 
MCMC chains’ convergence problems. The Gamma-Poison model and the two types of log-linear models 
of section 2, using different subsets of variables X1 through X7 above as explanatory variables, were 
implemented in the WinBugs software (Spiegelhalter et al. 2003). For each model, two chains were 
produced and convergence of the MCMC chains was monitored by means of the Brooks and Gelman 
criterion implemented in WinBugs. Convergence in general was clearly attained for most parameters, 
although certainly not so for some CAR effects in the type two models. As model selection criterion, the 
criterion due to Gelfand and Gosh 1998 was used. The selected model is a type two model that includes 
X3, X4 and X7 as explanatory variables, that is, the equation for the logarithm of the relative risk in each 
spatial unit i, is: 

 

( ) iiiiii c+v+X+X+X+β=ψ 7,74,43,3 βββ0log , I,=i 1,... . 

 

4.1 Effect of the selected explanatory variables 

The MCMC based approximate densities for the coefficients of the included explanatory variables and 
that of the intercept are shown in Figure 6.  

A decrease in variables X3 and X4 is associated with an increase in (log of ) the relative risk, since the 
locations of these parameters’ distributions are clearly to the left of zero. Let us remember that, in 
agreement with the definition of these variables, the smaller the values of X3 and X4, the higher the 
density of water bodies or rivers in the spatial unit. An important fraction of the lower income population 
in rural and urban areas has settled in the flood plains and river margins throughout the country; therefore 
the lower the values of X3 and X4 the larger the number of people potentially affected by rainfall related 
events. 

                                                      
6 Those represented with lines at the working scale of  1:250,000. The primary water bodies are those 
represented with polygons.  
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A positive association is seen between population density and relative risk, as portrayed by the density 
of the coefficient of X7. This is likely to mirror the fact that, in Venezuela, usually big cities are 
surrounded by or comprise inside of its poorer zones with very deficient infrastructure and services (the 
so-called marginal zones), built on inadequate land and which are prone to landslides and/or floods when 
strong precipitation occurs.  

 
Figure 6: Kernel smoothing probability densities for the intercept and the three explanatory variables of 

the selected model. All densities are produced using samples from the MCMC simulated chains. 

 

4.2 Relative Risks Map 

The expected relative risks for all districts are presented in Figure 7. These are computed, for each 
district, as the average of the respective MCMC relative risk chain. The expected relative risks that are 
smaller than one are masked with lighter colours. A cluster of relative risks greater than one are visible in 
the North-Central region of the country. The two district clusters at the south of the country were induced 
by a single big event in June of 1996, which affected this region of rather poor infrastructure. The 
presence of  risky  districts  in   the  west  extreme  of  the country can be explained by the presence of the  
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Figure 7: Expected Relative Risks 

 

Figure 8: Estimated standard deviations for the relative risks’ distributions 
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Andean ridge, which then abruptly descends towards the South-West of the country, into a very flat and 
low land. These characteristics can also explain the presence of the two risky districts in the South-West.  
As a complement to the expected relative risk map, the standard deviations of the relative risk 
distributions are shown in Figure 8 above. 

 

4.3 Model Validation 

In this section we report briefly on model validation. We employ a variant of cross-validation as 
means of identifying districts of which the observed risk is “too high” or “too low” under the assumed 
model, as measured through a suitable discrepancy criterion (DC) to be introduced shortly. Districts or 
areas presenting an extreme value of the DC will be named divergent districts or areas. The result of this 
validation analysis can be: 1. we find no divergent districts, which would imply a reasonable fitness of the 
model. 2. We find one or two divergent districts only, which would imply a reasonable fitness of the 
model but, at the same time, the presence of one or two “hot spots” or “interesting areas” where the 
influence of covariates or the spatial association pattern deviates considerably from that of the rest of the 
districts. 3. Relatively many (say, more that 1-2%) of the districts show a divergent response, which 
would imply the inadequacy of the fitted model.  

The idea of checking the consistency of data with a model is standard in statistics and the general 
approach, of which the analysis here presented is a particular application, can be called the “predictive 
distribution approach”. For an introduction to it, see chapter 9 of Gilks et al. 1996 and the references 
therein. The interested reader is referred to Stern and Cressie (2000) and Marshall and Spiegelhalter 
(2003) for further details on the application of the concept specifically to disease mapping.  

Since we have fitted a model to the data presented in section 3, it is in principle possible, for any 
positive integer repiy ,  representing a potential number of people affected at district i during a time-span of 

40 years, to compute the probability of repiy ,  according the fitted model. This probability would be, if we 

use a Poisson model such as those presented in section 2, given by ( )
!

ˆ
Pr

,

ˆ

,

,

repi

y

repii y
eDatayZ

repi λλ −

== , where 

iZ  stands for random variable “Number of people affected at district i”, whereas 

( )iiiiii c+v+X+X+X+βE ˆˆˆˆˆˆexp.ˆ
7,74,43,3 βββλ 0=  is built from estimates of the model parameters such as, 

for example, the averages of the values with which plots in Figure 6 were created and their equivalents for 
effects ic  and iv . One idea for testing the adequacy of the model could be to compute in a like manner 
the probabilities of the values actually observed at districts i=1,…,I; namely  

( )
!

ˆ
Pr

,

ˆ

,

,

obsi

y

obsii y
eDatayZ

obsi λλ −

== , and check whether these probabilities are “too low” in some sense. If the 

model declares unlikely even the data that was actually observed, then we have reasons for discarding 
such a model. This is basically the idea that we implement for our validation analysis, with three 
modifications: 

Firstly, we shall use the probability of { }obsii yZ ,≤  instead of that of { }obsii yZ ,=  as a discrepancy 
criterion. A too high value of the criterion indicates that the fitted model predicts mostly values which are 
considerably under the observed ones (under-estimates losses), whereas a too low value of the criterion 
means that the model predicts mostly values above the observed ones (over-estimates losses). In this work, 
we define values above 0.9 as “too high” and values under 0.1 as “too low”. 
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Secondly, we shall compute the probability constituting our discrepancy criterion for each district i on the 
basis of all observed data except for obsiy ,  itself, namely: { }( )obsiobsii yDatayZ ,,Pr −≤ . Thus, the technique 
is a version of the cross-validation method. As shorthand for { }obsiyData ,−  we shall write iy−  . 

Thirdly, instead of computing plug-in estimates for the parameters and then computing the desired 
probability, we shall use the “posterior predictive probability” distribution (see, for example, chapter 1 of 
Gelman et al. 2004), which is customary in Bayesian statistics: 

( ) ( ) ( )∫
Θ

−− === iiiiobsiiiobsii dyyZyyZ θθθ Pr.PrPr ,,  

which means that iDC , the discrepancy criterion for district i is given by: 

( ) ( ) ( )∑ ∫
= Θ

−−












==≤=
obsiy

n
iiiiiiobsiii dynZyyZDC

,

0
, Pr.PrPr θθθ        (eq. 1) 

The integral in equation 1 is along all possible values of the parameters { }iii cv ,,βθ


= ; this integral is 
normally found by simulation, on the basis of the MCMC chains of the model parameters. Thus, in 
principle, one should run the MCMC algorithm up to I = 335 times, leaving one district at a time, in order 
to compute the discrepancy criterion for each district. This can be computationally very demanding. 
Ingenious techniques to approximate the criterion by running the MCMC algorithm only once are the 
object of the papers of Stern and Cressie 2000 and Marshall and Spiegelhalter 2003. For the current 
analysis, we employed the method proposed by Stern and Cressie. 

Specific details are rather numerous and are not susceptible of being addressed within the small space 
of this section; the reader may see the bibliography given above for details. Hopefully we have here 
conveyed the basic idea behind this “posterior predictive” cross-validation variant.   

In Figure 9, we present the result of applying cross-validation to the data and the model selected. Only 
2 out of 335 districts presented an extreme value for the discrepancy criterion. As explained above, rather 
than a sign of model inadequacy, this is indication of a particular response of these districts, potentially 
due to one or more unconsidered factors present at each of them, which should be investigated. One of the 
anomalous districts (Zamora, Aragua state) exhibits a DC value greater than 0.9, which means that the 
model under-estimates the expected number of people affected. The other one (Iribarren, Lara state) 
presents a DC value smaller than 0.1, which indicates under-estimation.   

Summarizing, the model is adequate, according to the cross-validation method employed. Also, two 
districts have been identified as providing a different response with respect to the covariates analysed and 
the spatial association with its neighbouring districts, as compared with all other districts studied.  

 

4.4 Inclusion of the Precipitation Variable 

The reader might have already noticed that precipitation data, in the form of monthly anomalies on a 
30”x30” grid, was available for this study and yet is not reflected in the final fitted model. The inclusion 
of the precipitation variable as a time series of monthly rainfall anomalies implies a spatio-temporal 
model, in which the number of parameters to estimate increases considerably. In this first attempt to 
picture the overall situation of the relative risks in Venezuela, we considered it sounder not to include the 
precipitation variable. One of the problems with a spatio-temporal model for precipitation related events 
is the great number of no-case (“zero events”) that is to be expected in many districts along the time-span 
considered. As an example, using the monthly precipitation anomalies of section 3 and a study time-span 
of 40 years yields 480 time-steps for each district, in most of which a zero will result, making inference 
very difficult and MCMC fitting (convergence) unfeasible. One possibility that may be worth trying in 
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the future is the use of the “zero inflated” models (Lambert 1992, Ghosh et al. 2006) where this kind of 
data becomes tractable. 

 

 
 
 
Figure 9: Divergent areas, showing a different response pattern as compared to the rest of the districts. 
 
 
 
5. CONCLUSIONS 

 
A methodology taken from epidemiology when dealing with disease mapping was successfully 

applied to the mapping of relative risks as a measure of vulnerability of people being affected by 
landslides and/or floods at the district scale in Venezuela. An overview of the situation for the whole 
country was then obtained, which can be a first step for future studies at local scales. Geographical 
variables, specifically, density of water bodies’ network and population density were found to be 
positively associated with an increase in the relative risk at the district scale. The presence of the CAR 
random coefficients in the selected model, however, makes a case for a deeper understanding of the 
mechanism determining the spatial distribution of the relative risks.  
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